A sharp minimax lower bound for the nonparametric estimation of Sobolev densities of order 1/2

被引:0
|
作者
Efromovich, Sam [1 ]
机构
[1] Univ UTDallas, Dept Math Sci, Richardson, TX 75083 USA
关键词
D O I
10.1016/j.spl.2009.08.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Results on sharp minimax estimation of the probability density from a Sobolev function class, established in the 1980s, were among the first sharp minimax results in the nonparametric curve estimation literature. This paper considers the last unsolved case - a Sobolev class of order 1/2 of densities with infinite support. This brings a closure to this classical topic in the nonparametric curve estimation theory. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:77 / 81
页数:5
相关论文
共 50 条
  • [41] 2ND-ORDER CONDITIONS IN NONSMOOTH PROBLEMS OF THE MATHEMATICAL-PROGRAMMING APPLIED TO MINIMAX WITH BOUND VARIABLES
    LEVITIN, ES
    DOKLADY AKADEMII NAUK SSSR, 1979, 244 (02): : 286 - 290
  • [42] A sharp nonasymptotic bound and phase diagram of L1/2 regularization
    Hai Zhang
    Zong Ben Xu
    Yao Wang
    Xiang Yu Chang
    Yong Liang
    Acta Mathematica Sinica, English Series, 2014, 30 : 1242 - 1258
  • [43] A Sharp Nonasymptotic Bound and Phase Diagram of L1/2 Regularization
    Hai ZHANG
    Zong Ben XU
    Yao WANG
    Xiang Yu CHANG
    Yong LIANG
    ActaMathematicaSinica(EnglishSeries), 2014, 30 (07) : 1242 - 1258
  • [44] A Sharp Nonasymptotic Bound and Phase Diagram of L1/2 Regularization
    Zhang, Hai
    Xu, Zong Ben
    Wang, Yao
    Chang, Xiang Yu
    Liang, Yong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (07) : 1242 - 1258
  • [45] The greatest possible lower type of entire functions of order ρ a (0;1) with zeros of fixed ρ-densities
    Braichev, G. G.
    Sherstyukova, O. V.
    MATHEMATICAL NOTES, 2011, 90 (1-2) : 189 - 203
  • [46] The greatest possible lower type of entire functions of order ρ ∈ (0; 1) with zeros of fixed ρ-densities
    G. G. Braichev
    O. V. Sherstyukova
    Mathematical Notes, 2011, 90
  • [47] A lower bound for S(2p-1(2p-1))
    Le, MH
    SMARANDACHE NOTIONS, VOL 12, 2001, 12 : 217 - 218
  • [48] On a sharp lower bound on the blow-up rate for the L2 critical nonlinear Schrodinger equation
    Merle, F
    Raphael, P
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 19 (01) : 37 - 90
  • [49] Sharp Estimates for Derivatives of Functions in the Sobolev Classes (W)over-circle2r(-1,1)
    Kalyabin, G. A.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2010, 269 (01) : 137 - 142
  • [50] A Simple 2nd Order Lower Bound to the Energy of Dilute Bose Gases
    Brietzke, Birger
    Fournais, Soren
    Solovej, Jan Philip
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 376 (01) : 323 - 351