User Intention Prediction Method Based on Hybrid Feature Selection and Stacking Multi-model Fusion

被引:6
|
作者
Xu, Zhongxian [1 ]
Sun, Yuejia [1 ]
Guo, Ye [1 ]
Zhou, Zhihong [1 ]
Cheng, Yinchao [2 ]
Lin, Lin [1 ]
机构
[1] China Mobile Res Inst, Dept User & Market Res, Beijing, Peoples R China
[2] China Mobile Res Inst, Dept Tech Middle Platform Support, Beijing, Peoples R China
关键词
hybrid feature selection; multi-model fusion; intention prediction; Stacking; data mining;
D O I
10.1109/ICECE56287.2022.10048613
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The domestic communication business market tends to be saturated, and the market competition of telecom operators is becoming increasingly fierce. How to mine and predict customers' potential business needs and consumption behavior intentions from users' massive data based on big data is crucial to the fine operation and marketing strategy of telecom operators' existing customers. Due to the complexity of operator network data and the diversity of user behavior, there are many limitations and challenges in the research of user value feature mining, accuracy and generalization of prediction models. In order to solve the above problems, this paper provides a user intention prediction method based on the fusion of mixed feature selection and stacking model. First, based on the hybrid feature selection model of Filter mode and weighted Random Forest, the influencing factors are mined, and the best feature subset is screened; The stacking model fusion framework is proposed, and the FWRF_Stacking hybrid ensemble model based on four classifiers is constructed according to the combination strategy of the model diversity evaluation method and the weighted average method. Finally, it is verified on the real data set of operators. The experimental results show that the prediction model proposed in this paper is superior to other baseline models in multiple performance indicators, and has better effect and applicability for the prediction of telecom customers' business consumption intention.
引用
收藏
页码:220 / 226
页数:7
相关论文
共 50 条
  • [31] Deep Feature Combination Based Multi-Model Wind Power Prediction
    Han, Li
    Chen, Liu
    Bin, Yu
    Cun, Dong
    Hao Yu-chen
    Xin, Jin
    2019 IEEE 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATION ENGINEERING TECHNOLOGY (CCET), 2019, : 143 - 148
  • [32] a CNN-Attention-LightGBM Arrester Defect Prediction Method based on Multi-model Fusion
    Sheng, Jizheng
    Liu, Xinmin
    Li, Bing
    Cui, Yang
    Zhu, Lei
    Zhang, Xiuping
    2023 6TH INTERNATIONAL CONFERENCE ON ELECTRONICS AND ELECTRICAL ENGINEERING TECHNOLOGY, EEET 2023, 2023, : 122 - 127
  • [33] Prediction of CO2 Solubility in Ionic Liquids Based on Multi-Model Fusion Method
    Xia, Luyue
    Wang, Jiachen
    Liu, Shanshan
    Li, Zhuo
    Pan, Haitian
    PROCESSES, 2019, 7 (05)
  • [34] A Novel Multi-Model Stacking Ensemble Learning Method for Metro Traction Energy Prediction
    Lin, Shan
    Nong, Xingzhong
    Luo, Jianqiang
    Wang, Chen'en
    IEEE Access, 2022, 10 : 129231 - 129244
  • [35] Multi-Model Data Fusion Based Unobtrusive Identification Method
    Yu D.
    Chen Y.
    Peng X.
    Jiao S.
    Li X.
    Zhong X.
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2019, 56 (03): : 635 - 642
  • [36] Pathogenic virus detection method based on multi-model fusion
    Zhao, Xiaoyong
    Wang, Jingwei
    PROCEEDINGS OF THE 2020 INTERNATIONAL CONFERENCE ON COMPUTER, INFORMATION AND TELECOMMUNICATION SYSTEMS (CITS), 2020, : 89 - 92
  • [37] A simple multi-model prediction method
    Strutzel, Flavio A. M.
    Bogle, I. David L.
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2018, 138 : 51 - 76
  • [38] Multi-model Stacking Ensemble Learning for Student Achievement Prediction
    Fang, Tao
    Huang, Sirui
    Zhou, Ya
    Zhang, Huibing
    PAAP 2021: 2021 12TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING, 2021, : 136 - 140
  • [39] Prediction of glass-forming ability based on multi-model fusion
    Zeng, Yangchuan
    Tian, Zean
    Zheng, Quan
    Jiang, Mingxiang
    Peng, Yikun
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2024, 623
  • [40] A multi-feature-based multi-model fusion method for state of health estimation of lithium-ion batteries
    Lin, Mingqiang
    Wu, Denggao
    Meng, Jinhao
    Wu, Ji
    Wu, Haitao
    JOURNAL OF POWER SOURCES, 2022, 518