Drought x CO2 interactions in trees: a test of the low-intercellular CO2 concentration (Ci) mechanism

被引:47
|
作者
Kelly, Jeff W. G. [1 ,2 ]
Duursma, Remko A. [3 ]
Atwell, Brian J. [1 ]
Tissue, David T. [3 ]
Medlyn, Belinda E. [1 ,3 ]
机构
[1] Macquarie Univ, Dept Biol Sci, N Ryde, NSW 2109, Australia
[2] Univ Alberta, Sch Forest Sci & Management, Dept Renewable Resources, 4-29 Earth Sci Bldg, Edmonton, AB T6G 2E3, Canada
[3] Univ Western Sydney, Hawkesbury Inst Environm, Hawkesbury Campus,Locked Bag 1797, Penrith, NSW 2751, Australia
基金
澳大利亚研究理事会;
关键词
acclimation; drought; elevated atmospheric CO2 concentration; Eucalyptus pilularis; Eucalyptus populnea; plant traits; ELEVATED ATMOSPHERIC CO2; WATER-USE EFFICIENCY; LEAF GAS-EXCHANGE; INSTANTANEOUS TRANSPIRATION EFFICIENCY; PRUNUS-AVIUM SEEDLINGS; CARBON-DIOXIDE; STOMATAL CONDUCTANCE; PINUS-PINASTER; PLANT-RESPONSES; SOIL DROUGHT;
D O I
10.1111/nph.13715
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Models of tree responses to climate typically project that elevated atmospheric CO2 concentration (eC(a)) will reduce drought impacts on forests. We tested one of the mechanisms underlying this interaction, the 'low C-i effect', in which stomatal closure in drought conditions reduces the intercellular CO2 concentration (C-i), resulting in a larger relative enhancement of photosynthesis with eC(a), and, consequently, a larger relative biomass response. We grew two Eucalyptus species of contrasting drought tolerance at ambient and elevated C-a for 6-9 months in large pots maintained at 50% (drought) and 100% field capacity. Droughted plants did not have significantly lower C-i than well-watered plants, which we attributed to long-term changes in leaf area. Hence, there should not have been an interaction between eC(a) and water availability on biomass, and we did not detect one. The xeric species did have higher C-i than the mesic species, indicating lower water-use efficiency, but both species exhibited similar responses of photosynthesis and biomass to eC(a), owing to compensatory differences in the photosynthetic response to C-i. Our results demonstrate that long-term acclimation to drought, and coordination among species traits may be important for predicting plant responses to eC(a) under low water availability.
引用
收藏
页码:1600 / 1612
页数:13
相关论文
共 50 条
  • [31] EFFECT OF CO2 CONCENTRATION DURING GROWTH ON A CO2 CONCENTRATING MECHANISM IN WHITE CLOVER AS PREDICTED FROM DIFFERENTIAL (CO2)-C-14-(CO2)-C-12 UPTAKE
    LEHNHERR, B
    MACHLER, F
    NOSBERGER, J
    JOURNAL OF EXPERIMENTAL BOTANY, 1985, 36 (173) : 1835 - 1841
  • [32] To CO2 or not to CO2 ,that is the question!
    Hohnadel, DC
    Gruttadauria, M
    Murray, K
    Levin, M
    D'Souza, J
    CLINICAL CHEMISTRY, 2003, 49 (06) : A90 - A90
  • [33] Interactions of CO2/brine/rock under CO2 sequestration conditions
    US DOE, NETL, Pittsburgh
    PA, United States
    ACS Natl. Meet. Book Abstr., 1600,
  • [34] Modeling of CO2 Fluxes: Study of the Interactions of Urban Climate with CO2
    Fattah, Ghizlane
    Mabrouki, Jamal
    Ghrissi, Fouzia
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 1, 2022, 1417 : 966 - 977
  • [35] Interactions of CO2/brine/rock under CO2 storage conditions
    Soong, Yee
    Crandall, Dustin
    Dalton, Laurel
    Mclendon, Robert
    Zhang, Liwei
    Lin, Ronghong
    Howard, Bret
    Haljasmaa, Igor
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [36] Interactions of CO2/brine/rock under CO2 sequestration conditions
    Soong, Yee
    Howard, Bret
    Crandall, Dustin
    McLendon, Robert
    Irdi, Gino
    Dilmore, Robert
    Zhang, Liwei
    Lin, Ronghong
    Haljasmaa, Igor
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [37] Ratio of intercellular CO2 concentration to stomatal conductance is a reflection of mesophyll efficiency
    Sheshshayee, MS
    Prasad, BTK
    Nataraj, KN
    Shankar, AG
    Prasad, TG
    Udayakumar, M
    CURRENT SCIENCE, 1996, 70 (07): : 672 - 675
  • [38] Mechanism of CO2 adsorption on Mg/DOBDC with elevated CO2 loading
    Liu, Yang
    Hu, Jianbo
    Ma, Xiaoli
    Liu, Jing
    Lin, Y. S.
    FUEL, 2016, 181 : 340 - 346
  • [39] The CO2 concentrating mechanism of C-4 photosynthesis: Bundle sheath cell CO2 concentration and leakage
    Jenkins, CLD
    AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 1997, 24 (04): : 543 - 547