Comparison of data with Monte Carlo simulations at the ATLAS barrel Combined Testbeam 2004

被引:3
|
作者
Speckmayer, P. [1 ]
机构
[1] CERN, CH-1211 Geneva 23, Switzerland
关键词
D O I
10.1088/1742-6596/160/1/012076
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The scheme adopted as baseline by ATLAS for the calibration of hadrons depends strongly on the quality of the description of the data by simulations. In 2004, the calorimeters of the ATLAS barrel region have been exposed to a testbeam in order to evaluate the energy response of pions for the energies ranging from 1 to 350 GeV. For the energy region from 3 to 9 GeV a data analysis with the full systematic uncertainty is available. The data has been compared extensively to GEANT4 simulations. Several combinations of physical models-the so called "physics lists"-are provided by the GEANT4 collaboration and have been evaluated. The best overall description of data is achieved with the physics list QGSP_BERT which describes the energy response of pions within a few percent. QGSP_BERT has been adopted by ATLAS for the simulation of the first data.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam
    Abat, E.
    Abdallah, J. M.
    Addy, T. N.
    Adragna, P.
    Aharrouche, M.
    Ahmad, A.
    Akesson, T. P. A.
    Aleksa, M.
    Alexa, C.
    Anderson, K.
    Andreazza, A.
    Anghinolfi, F.
    Antonaki, A.
    Arabidze, G.
    Arik, E.
    Atkinson, T.
    Baines, J.
    Baker, O. K.
    Banfi, D.
    Baron, S.
    Barr, A. J.
    Beccherle, R.
    Beck, H. P.
    Belhorma, B.
    Bell, P. J.
    Benchekroun, D.
    Benjamin, D. P.
    Benslama, K.
    Kuutmann, E. Bergeaas
    Bernabeu, J.
    Bertelsen, H.
    Binet, S.
    Biscarat, C.
    Boldea, V.
    Bondarenko, V. G.
    Boonekamp, M.
    Bosman, M.
    Bourdarios, C.
    Broklova, Z.
    Chromek, D. Burckhart
    Bychkov, V.
    Callahan, J.
    Calvet, D.
    Canneri, M.
    Garrido, M. Capeans
    Caprini, M.
    Sas, L. Cardiel
    Carli, T.
    Carminati, L.
    Carvalho, J.
    JOURNAL OF INSTRUMENTATION, 2011, 6
  • [42] A comparison of algorithms to Monte Carlo data near inhomogeneities
    Jones, A
    Das, I
    MEDICAL PHYSICS, 2002, 29 (06) : 1232 - 1232
  • [43] Athermal lattice polymers: A comparison of RISM theory and Monte Carlo simulations
    Janssen, RHC
    Nies, E
    Cifra, P
    MACROMOLECULES, 1997, 30 (20) : 6339 - 6347
  • [44] Diffuse photon density wave measurements in comparison with the Monte Carlo simulations
    Kuzmin, V. L.
    Neidrauer, M. T.
    Diaz, D.
    Zubkov, L. A.
    DESIGN AND PERFORMANCE VALIDATION OF PHANTOMS USED IN CONJUNCTION WITH OPTICAL MEASUREMENT OF TISSUE VII, 2015, 9325
  • [45] Comparison of Monte Carlo simulations of photon/electron dosimetry in microscale applications
    O. P. Joneja
    C. Negreanu
    J. Stepanek
    R. Chawla
    Australasian Physics & Engineering Sciences in Medicine, 2003, 26 (2): : 62 - 68
  • [46] Dynamics of Chromatin Fibers: Comparison of Monte Carlo Simulations with Force Spectroscopy
    Norouzi, Davood
    Zhurkin, Victor B.
    BIOPHYSICAL JOURNAL, 2018, 115 (09) : 1644 - 1655
  • [47] Interactions of a polyanion with a cationic micelle: Comparison of Monte Carlo simulations with experiment
    Laguecir, A
    Stoll, S
    Kirton, G
    Dubin, PL
    JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (32): : 8056 - 8065
  • [48] Harmonic Lattice theory of coulomb solids and comparison with Monte Carlo simulations
    Dewitt, H.
    Slattery, W.
    Baiko, D.
    Yakovlev, D.
    Contributions to Plasma Physics, 2000, 41 (2-3) : 251 - 254
  • [49] Comparison of Treatment Planning Algorithms and Monte Carlo Simulations in Oesophageal Radiotherapy
    Johns, D.
    Spezi, E.
    Downes, P.
    Lewis, D.
    RADIOTHERAPY AND ONCOLOGY, 2017, 123 : S776 - S776
  • [50] Comparison of Sampling Plans by Variables using the Bootstrap and Monte Carlo Simulations
    Figueiredo, Fernanda
    Figueiredo, Adelaide
    Gomes, M. Ivette
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 535 - 538