Simple-Direct Modules Over Formal Matrix Rings

被引:0
|
作者
Abyzov, A. N. [1 ]
Tapkin, D. T. [1 ]
机构
[1] Kazan Volga Reg Fed Univ, Dept Algebra & Math Log, Kazan 420008, Russia
基金
俄罗斯科学基金会;
关键词
simple-direct-injective module; simple-direct-projective module;
D O I
10.1134/S1995080221010029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we study simple-direct-injective modules and simple-direct-projective modules over a formal matrix ring K = (R M N S) , where M is an (R, S)-bimodule and N is a (S, R)-bimodule over rings R and S. We determine necessary and sufficient conditions for a K-module to be, respectively, simple-direct-injective or simple-direct-projective. We also give some examples to illustrate and delimit our results.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [41] FORMAL A-MODULES OVER P-ADIC INTEGER RINGS
    COX, LH
    COMPOSITIO MATHEMATICA, 1974, 29 (03) : 287 - 308
  • [42] Injective Hulls of Simple Modules over Differential Operator Rings
    Carvalho, Paula A. A. B.
    Hatipoglu, Can
    Lomp, Christian
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (10) : 4221 - 4230
  • [43] RINGS OVER WHICH FLAT COVERS OF SIMPLE MODULES ARE PROJECTIVE
    Buyukasik, Engin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (03)
  • [44] A NOTE ON SIMPLE MODULES OVER QUASI-LOCAL RINGS
    Carvalho, Paula A. A. B.
    Lomp, Christian
    Smith, Patrick F.
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2018, 24 : 91 - 106
  • [45] A Dichotomy for the Gelfand–Kirillov Dimensions of Simple Modules over Simple Differential Rings
    Ashish Gupta
    Arnab Dey Sarkar
    Algebras and Representation Theory, 2018, 21 : 579 - 587
  • [46] ADMISSIBLE BALANCED PAIRS OVER FORMAL TRIANGULAR MATRIX RINGS
    Mao, Lixin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) : 1387 - 1400
  • [47] Gorenstein homological dimensions of modules over triangular matrix rings
    Zhu, Rongmin
    Liu, Zhongkui
    Wang, Zhanping
    TURKISH JOURNAL OF MATHEMATICS, 2016, 40 (01) : 146 - 160
  • [48] Gorenstein projective modules and recollements over triangular matrix rings
    Li, Huanhuan
    Zheng, Yuefei
    Hu, Jiangsheng
    Zhu, Haiyan
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (11) : 4932 - 4947
  • [49] Direct products of simple modules over Dedekind domains
    C. Santa-Clara
    P. F. Smith
    Archiv der Mathematik, 2004, 82 : 8 - 12
  • [50] Idempotents of 2 x 2 matrix rings over rings of formal power series
    Drensky, Vesselin
    LINEAR & MULTILINEAR ALGEBRA, 2021,