Growing applications for bioassembled Forster resonance energy transfer cascades

被引:35
|
作者
Rowland, Clare E. [1 ]
Delehanty, James B. [1 ]
Dwyer, Chris L. [2 ]
Medintz, Igor L. [1 ]
机构
[1] US Naval Res Lab, Ctr Bio Mol Sci & Engn, Code 6900, Washington, DC 20375 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
关键词
D O I
10.1016/j.mattod.2016.09.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Arranging multiple fluorophores into carefully designed assemblies allows them to engage in directed energy transfer cascades that can span significant portions of both the visible spectrum and nanoscale space. Combining these cascades with the 3-dimensional control of fluorophore placement provided by different types of biological templates, and especially DNA, may allow them to progress from an interesting research platform to enabling new applications. Here, we review the progress in creating such systems based on the diversity of available fluorophores and biological scaffolds. Preliminary work toward targeted applications ranging from optical utility in light harvesting, lasing, molecular computing, optical data storage and encryption to biosensing and photodynamic therapy are discussed. Finally, we provide a perspective on how this unique combination of photonically active biomaterials may transition to concerted applications.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 50 条
  • [41] Beyond Forster Resonance Energy Transfer in Linear Nanoscale Systems
    Barford, William
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (43): : 11842 - 11843
  • [42] Paths to Forster's resonance energy transfer (FRET) theory
    Masters, B. R.
    EUROPEAN PHYSICAL JOURNAL H, 2014, 39 (01): : 87 - 139
  • [43] Forster resonance energy transfer calibration of κ2 for Venus and Cerulean
    Meng, Fanjie
    Sachs, Frederick
    BIOPHYSICAL JOURNAL, 2007, : 376A - 376A
  • [44] Large enhancement of Forster resonance energy transfer on graphene platforms
    Biehs, S. -A.
    Agarwal, G. S.
    APPLIED PHYSICS LETTERS, 2013, 103 (24)
  • [45] Investigating supramolecular systems using Forster resonance energy transfer
    Teunissen, Abraham J. P.
    Perez-Medina, Carlos
    Meijerink, Andries
    Mulder, Willem J. M.
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (18) : 7027 - 7044
  • [46] satFRET: estimation of Forster resonance energy transfer by acceptor saturation
    Beutler, Martin
    Makrogianneli, Konstantina
    Vermeij, Rudolf J.
    Keppler, Melanie
    Ng, Tony
    Jovin, Thomas M.
    Heintzmann, Rainer
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2008, 38 (01): : 69 - 82
  • [47] Fundamental figures of merit for engineering Forster resonance energy transfer
    Cortes, Cristian L.
    Jacob, Zubin
    OPTICS EXPRESS, 2018, 26 (15): : 19371 - 19387
  • [48] Forster resonance energy transfer as a tool to study photoreceptor biology
    Hovan, Stephanie C.
    Howell, Scott
    Park, Paul S. -H.
    JOURNAL OF BIOMEDICAL OPTICS, 2010, 15 (06)
  • [49] Beyond Forster Resonance Energy Transfer in Biological and Nanoscale Systems
    Beljonne, David
    Curutchet, Carles
    Scholes, Gregory D.
    Silbey, Robert J.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2009, 113 (19): : 6583 - 6599
  • [50] Forster resonance energy transfer in a nanoscopic system on a dielectric interface
    Batabyal, Subrata
    Mondol, Tanumoy
    Das, Kaustuv
    Pal, Samir Kumar
    NANOTECHNOLOGY, 2012, 23 (49)