Growing applications for bioassembled Forster resonance energy transfer cascades

被引:35
|
作者
Rowland, Clare E. [1 ]
Delehanty, James B. [1 ]
Dwyer, Chris L. [2 ]
Medintz, Igor L. [1 ]
机构
[1] US Naval Res Lab, Ctr Bio Mol Sci & Engn, Code 6900, Washington, DC 20375 USA
[2] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27708 USA
关键词
D O I
10.1016/j.mattod.2016.09.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Arranging multiple fluorophores into carefully designed assemblies allows them to engage in directed energy transfer cascades that can span significant portions of both the visible spectrum and nanoscale space. Combining these cascades with the 3-dimensional control of fluorophore placement provided by different types of biological templates, and especially DNA, may allow them to progress from an interesting research platform to enabling new applications. Here, we review the progress in creating such systems based on the diversity of available fluorophores and biological scaffolds. Preliminary work toward targeted applications ranging from optical utility in light harvesting, lasing, molecular computing, optical data storage and encryption to biosensing and photodynamic therapy are discussed. Finally, we provide a perspective on how this unique combination of photonically active biomaterials may transition to concerted applications.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 50 条
  • [1] Forster resonance energy transfer (FRET) and applications thereof
    Kaur, Amrita
    Kaur, Pardeep
    Ahuja, Sahil
    ANALYTICAL METHODS, 2020, 12 (46) : 5532 - 5550
  • [3] Forster resonance energy transfer on single molecules: biological applications
    Margeat, Emmanuel
    ACTUALITE CHIMIQUE, 2010, (347): : 30 - 40
  • [4] FOrster resonance energy transfer (FRET)-based biosensors for biological applications
    Zhang, Xiaojing
    Hu, Yue
    Yang, Xiaotong
    Tang, Yingying
    Han, Shuying
    Kang, An
    Deng, Haishan
    Chi, Yumei
    Zhu, Dong
    Lu, Yin
    BIOSENSORS & BIOELECTRONICS, 2019, 138
  • [5] Multichromophoric Forster resonance energy transfer
    Jang, SJ
    Newton, MD
    Silbey, RJ
    PHYSICAL REVIEW LETTERS, 2004, 92 (21) : 218301 - 1
  • [6] From Forster resonance energy transfer to coherent resonance energy transfer and back
    Clegg, Robert M.
    Sener, Melih
    Govindjee
    OPTICAL BIOPSY VII, 2010, 7561
  • [7] Forster resonance energy transfer photoacoustic microscopy
    Wang, Yu
    Wang, Lihong V.
    PHOTONS PLUS ULTRASOUND: IMAGING AND SENSING 2013, 2013, 8581
  • [8] Concentric Forster Resonance Energy Transfer Imaging
    Wu, Miao
    Algar, W. Russ
    ANALYTICAL CHEMISTRY, 2015, 87 (16) : 8078 - 8083
  • [9] Forster resonance energy transfer in absorbing environment
    Petrosyan, L. S.
    Noginov, M. N.
    Shahbazyan, T., V
    METAMATERIALS, METADEVICES, AND METASYSTEMS 2024, 2024, 13109
  • [10] Forster resonance energy transfer in membrane rafts
    Acasandrei, M
    Dale, RE
    vandeVen, M
    Steels, P
    Ameloot, M
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 373A - 373A