Network analysis in detection of early-stage mild cognitive impairment

被引:13
|
作者
Ni, Huangjing [2 ,3 ,7 ]
Qin, Jiaolong [2 ,3 ,8 ]
Zhou, Luping [4 ]
Zhao, Zhigen [5 ]
Wang, Jun [6 ]
Hou, Fengzhen [1 ]
机构
[1] China Pharmaceut Univ, Key Lab Biomed Funct Mat, Nanjing 210009, Jiangsu, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Brainnetome Ctr, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
[4] Univ Wollongong, Sch Comp & Informat Technol, Wollongong, NSW 2522, Australia
[5] Temple Univ, Dept Stat, Fox Sch Business, Philadelphia, PA 19122 USA
[6] Nanjing Univ Posts & Telecommun, Sch Geog & Biol Informat, Nanjing 210003, Jiangsu, Peoples R China
[7] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210093, Jiangsu, Peoples R China
[8] Southeast Univ, Res Ctr Learning Sci, Nanjing 210096, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Network analysis; Mild cognitive impairment; Resting-state functional magnetic; resonance imaging; Entropy of the degree distribution; EARLY ALZHEIMERS-DISEASE; MEDIAL TEMPORAL-LOBE; FALSE DISCOVERY RATE; FRONTAL LOBES; MEMORY IMPAIRMENT; EMPIRICAL BAYES; EEG SIGNALS; BRAIN; DIAGNOSIS; AMYGDALA;
D O I
10.1016/j.physa.2017.02.044
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The detection and intervention for early-stage mild cognitive impairment (EMCI) is of vital importance However, the pathology of EMCI remains largely unknown, making it be challenge to the clinical diagnosis. In this paper, the resting-state functional magnetic resonance imaging (rs-fMRI) data derived from EMCI patients and normal controls are analyzed using the complex network theory. We construct the functional connectivity (FC) networks and employ the local false discovery rate approach to successfully detect the abnormal functional connectivities appeared in the EMCI patients. Our results demonstrate the abnormal functional connectivities have appeared in the EMCI patients, and the affected brain regions are mainly distributed in the frontal and temporal lobes In addition, to quantitatively characterize the statistical properties of FCs in the complex network, we herein employ the entropy of the degree distribution (E-DD) index and some other well established measures, i.e., clustering coefficient (Cc) and the efficiency of graph (E-G). Eventually, we found that the E-DD index, better than the widely used Cc and EG measures, may serve as an assistant and potential marker for the detection of EMCI. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 119
页数:7
相关论文
共 50 条
  • [41] Semi-global Parameterization of Online Handwriting Features for Characterizing Early-Stage Alzheimer and Mild Cognitive Impairment
    Kahindo, C.
    El-Yacoubi, M. A.
    Garcia-Salicetti, S.
    Cristancho-Lacroix, V
    Kerherve, H.
    Rigaud, A-S
    IRBM, 2018, 39 (06) : 421 - 429
  • [42] Balance and gait performance in older adults with early-stage cognitive impairment
    Kuan, Yi-Chun
    Huang, Li-Kai
    Wang, Yuan-Hung
    Hu, Chaur-Jong
    Tseng, Ing-Jy
    Chen, Hung-Chou
    Lin, Li-Fong
    EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE, 2021, 57 (04) : 560 - 567
  • [43] Early-stage cognitive impairment: A social work practice and research agenda
    Adams, Kathryn Betts
    McClendon, McKee J.
    FAMILIES IN SOCIETY-THE JOURNAL OF CONTEMPORARY SOCIAL SERVICES, 2006, 87 (04): : 590 - 600
  • [44] Early detection of mild cognitive impairment in patients with cerebrovascular disease
    Popovic, IM
    Seric, V
    Demarin, V
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2005, 238 : S293 - S293
  • [45] Early Mild Cognitive Impairment Detection using a Hybrid Model
    Abbasian, Pouneh
    Cherian, Josh
    Taele, Paul
    Hammond, Tracy
    COMPANION PROCEEDINGS OF 2023 28TH ANNUAL CONFERENCE ON INTELLIGENT USER INTERFACES, IUI 2023 COMPANION, 2023, : 51 - 54
  • [46] Early Detection of Mild Cognitive Impairment using Pervasive Sensing
    Chowdhury, Arijit
    Bhattacharya, Sakyajit
    Ghose, Avik
    Krishnan, Balasubramaniam
    2019 41ST ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2019, : 5456 - 5459
  • [47] Early Detection of Mild Cognitive Impairment (MCI) in Primary Care
    Sabbagh, Marwan N.
    Boada, M.
    Borson, S.
    Chilukuri, M.
    Dubois, B.
    Ingram, J.
    Iwata, A.
    Porsteinsson, A. P.
    Possin, K. L.
    Rabinovici, G. D.
    Vellas, B.
    Chao, S.
    Vergallo, A.
    Hampel, H.
    JPAD-JOURNAL OF PREVENTION OF ALZHEIMERS DISEASE, 2020, 7 (03): : 165 - 170
  • [48] Early detection of mild cognitive impairment (MCI) using MEG
    Hammami, Mouhamad
    Maestu, Fernando
    Lopez, Maria Eugenia
    Bowyer, Susan
    NEUROLOGY, 2023, 100 (17)
  • [49] Early Detection of Mild Cognitive Impairment (MCI) in Primary Care
    Marwan N. Sabbagh
    M. Boada
    S. Borson
    M. Chilukuri
    B. Dubois
    J. Ingram
    A. Iwata
    A. P. Porsteinsson
    K. L. Possin
    G. D. Rabinovici
    B. Vellas
    S. Chao
    A. Vergallo
    H. Hampel
    The Journal of Prevention of Alzheimer's Disease, 2020, 7 : 165 - 170
  • [50] Occupational Therapy Interventions to ImproveDriving Performance inOlder People With Mild Cognitive Impairment or Early-Stage Dementia: A Systematic Review
    Spargo, Claire
    Laver, Kate
    Berndt, Angela
    Adey-Wakeling, Zoe
    George, Stacey
    AMERICAN JOURNAL OF OCCUPATIONAL THERAPY, 2021, 75 (05): : 1 - 14