Interaction and stability of periodic and localized structures in optical bistable systems

被引:42
|
作者
Tlidi, M [1 ]
Vladimirov, AG
Mandel, P
机构
[1] Free Univ Brussels, Theoret Nonlinear Opt Grp, B-1050 Brussels, Belgium
[2] St Petersburg State Univ, Fac Phys, St Petersburg 198904, Russia
[3] Weierstrass Inst Appl Anal & Stochast, D-10117 Berlin, Germany
关键词
cavity solitons; localized structures; periodic patterns; spatial modulational instability; stability of interacting solitons;
D O I
10.1109/JQE.2002.807193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We analytically and numerically study the role of the homogeneous zero mode on the interaction between two modulational instabilities. Periodic and localized structures (LSs) are considered in two transverse dimensions. We consider a real-order parameter description for a passive optical cavity driven by an external coherent field, valid close to the onset of optical bistability. A global description of pattern formation in both monostable and bistable regimes is given. We show that the interaction between the modulational modes and the zero mode modifies the existence and the stability of diffractive patterns. In particular, this interaction induces a coexistence between two different types of phase locked hexagonal structures. We also consider the interaction between two separated LSs. An analytical expression for the interaction potential in terms of modified Bessel functions is derived. Numerical simulations confirm the analytical predictions.
引用
收藏
页码:216 / 226
页数:11
相关论文
共 50 条
  • [21] Non-periodic phase structures in optical disc systems
    de Vries, JE
    Hendriks, BHW
    OPTICAL DATA STORAGE 2001, 2001, 4342 : 474 - 485
  • [22] ON THE STABILITY OF LOCALIZED ELECTROSTATIC STRUCTURES
    SCHAMEL, H
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1987, 42 (10): : 1167 - 1174
  • [23] Localized states in bistable pattern-forming systems
    Bortolozzo, U.
    Clerc, M. G.
    Falcon, C.
    Residori, S.
    Rojas, R.
    PHYSICAL REVIEW LETTERS, 2006, 96 (21)
  • [24] LOCALIZED STRUCTURES AND LOCALIZED PATTERNS IN OPTICAL BISTABILITY
    TLIDI, M
    MANDEL, P
    LEFEVER, R
    PHYSICAL REVIEW LETTERS, 1994, 73 (05) : 640 - 643
  • [25] SQUEEZING IN BISTABLE OPTICAL-SYSTEMS
    REYNAUD, S
    GIACOBINO, E
    JOURNAL DE PHYSIQUE, 1988, 49 (C-2): : 477 - 482
  • [26] STABILITY ANALYSIS FOR AN OPTICAL BISTABLE DYE SYSTEM
    GONG, SQ
    PAN, SH
    YANG, GZ
    PHYSICAL REVIEW A, 1993, 47 (03): : 2205 - 2210
  • [27] THE DISSIPATION IN MIXED OPTICAL BISTABLE SYSTEMS
    OU, F
    CAI, YQ
    WU, TW
    ZHANG, XD
    OPTICS COMMUNICATIONS, 1988, 65 (03) : 221 - 224
  • [28] Role of pump diffraction on the stability of localized structures in degenerate optical parametric oscillators
    Sánchez-Morcillo, VJ
    Staliunas, K
    PHYSICAL REVIEW E, 2000, 61 (06): : 7076 - 7080
  • [29] Bistable diode action in left-handed periodic structures
    Feise, MW
    Shadrivov, IV
    Kivshar, YS
    PHYSICAL REVIEW E, 2005, 71 (03):
  • [30] STOCHASTIC RESONANCE IN OPTICAL BISTABLE SYSTEMS
    BARTUSSEK, R
    HANGGI, P
    JUNG, P
    PHYSICAL REVIEW E, 1994, 49 (05): : 3930 - 3939