Modelling the strongest grain size in nanocrystalline FCC metals

被引:3
|
作者
Huang, Mingxin [1 ]
Bouaziz, Olivier [2 ,3 ]
van der Zwaag, Sybrand [4 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
[2] ArcelorMittal Res, F-57283 Maizieres Les Metz, France
[3] CNRS, UMR7633, Ctr Mat Mines Paris, F-91003 Evry, France
[4] Delft Univ Technol, Fac Aerosp Engn, NL-2629 HS Delft, Netherlands
关键词
Nanocrystalline; Strength; Abnormal Hall-Petch; STEADY-STATE DEFORMATION; IRREVERSIBLE THERMODYNAMICS; PLASTIC-DEFORMATION; CARBON-STEELS; BEHAVIOR; STRESS; COPPER;
D O I
10.1016/j.matlet.2011.06.104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A physical model is proposed to predict the critical grain size at which nanocrystalline FCC metals reach a maximum steady state flow stress. The model considers that nanocrystalline metals are composed of two phases. One is the grain boundary phase and the other is the grain interior phase. The grain boundary phase has specific deformation mechanism different to the grain interior phase. The critical grain size with the maximum steady state flow stress is predicted to decrease with deformation temperature and to increase with strain rate. Both normal and abnormal Hall-Petch relations can be described simultaneously by the model. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:3128 / 3130
页数:3
相关论文
共 50 条
  • [31] Mechanical properties of stabilized nanocrystalline FCC metals
    Spearot, Douglas E.
    Tucker, Garritt J.
    Gupta, Ankit
    Thompson, Gregory B.
    JOURNAL OF APPLIED PHYSICS, 2019, 126 (11)
  • [32] Giant irradiation effects in FCC nanocrystalline metals
    Tanimoto, H
    Yagi, N
    Mizubayashi, H
    METASTABLE, MECHANICALLY ALLOYED AND NANOCRYSTALLINE MATERIALS, 2005, 24-25 : 597 - 600
  • [33] Nanocrystalline fcc metals: bridging experiments with simulations
    Van Swygenhoven, H
    Derlet, PM
    Froseth, AG
    Van Petegem, S
    Budrovic, Z
    Hasnaoui, A
    NANOSCALE MATERIALS AND MODELING-RELATIONS AMONG PROCESSING, MICROSTRUCTURE AND MECHANICAL PROPERTIES, 2004, 821 : 285 - 294
  • [34] Nucleation and propagation of dislocations in nanocrystalline fcc metals
    Van Swygenhoven, H
    Derlet, PM
    Froseth, AG
    ACTA MATERIALIA, 2006, 54 (07) : 1975 - 1983
  • [35] Twin intersection mechanisms in nanocrystalline fcc metals
    Wu, F.
    Wen, H. M.
    Lavernia, E. J.
    Narayan, J.
    Zhu, Y. T.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 585 : 292 - 296
  • [36] Transition of deformation mechanisms and its connection to grain size distribution in nanocrystalline metals
    Zhu, B
    Asaro, RJ
    Krysl, P
    Bailey, R
    ACTA MATERIALIA, 2005, 53 (18) : 4825 - 4838
  • [37] Crack growth versus blunting in nanocrystalline metals with extremely small grain size
    Yang, Fan
    Yang, Wei
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2009, 57 (02) : 305 - 324
  • [38] Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals
    Zeng, Hong
    Wu, Ying
    Zhang, Jiuxing
    Kuang, Chunjiang
    Yue, Ming
    Zhou, Shaoxiong
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2013, 23 (01) : 18 - 22
  • [39] Grain size-dependent electrical resistivity of bulk nanocrystalline Gd metals
    Hong Zeng
    Ying Wu
    Jiuxing Zhang
    Chunjiang Kuang
    Ming Yue
    Shaoxiong Zhou
    ProgressinNaturalScience:MaterialsInternational, 2013, 23 (01) : 18 - 22
  • [40] Effects of grain size distribution on the mechanical response of nanocrystalline metals: Part II
    Zhu, B.
    Asaro, R. J.
    Krysl, P.
    Zhang, K.
    Weertman, J. R.
    ACTA MATERIALIA, 2006, 54 (12) : 3307 - 3320