Filtering and Segmentation of Retinal OCT Images

被引:0
|
作者
Aleman-Flores, Miguel [1 ]
Aleman-Flores, Rafael [2 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Informat & Sistemas, Las Palmas Gran Canaria, Spain
[2] Univ Las Palmas Gran Canaria, Dept Morfol, Las Palmas Gran Canaria, Spain
关键词
D O I
10.1007/978-3-319-74727-9_34
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents a method for the segmentation of optical coherence tomography images of the retina. Before segmenting the tomography, anisotropic diffusion is applied to reduce noise, but preserve the relevant edges. Afterward, the intensity profile of the images is analyzed to extract an initial approximation for the segmentation of three bands within the retina. Finally, a combination of attraction and regularization terms is used to refine the segmentation by fitting the limits of the bands to the highest gradients and smoothing their shapes to make them more regular. From the bands extracted in the different slices of the tomography, a three-dimensional reconstruction is performed for a better visualization of the results.
引用
收藏
页码:289 / 296
页数:8
相关论文
共 50 条
  • [41] SANet: A self-adaptive network for hyperreflective foci segmentation in retinal OCT images
    Yao, Chenpu
    Zhu, Weifang
    Wang, Meng
    Zhu, Liangjiu
    Huang, Haifan
    Chen, Haoyu
    Chen, Xinjian
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [42] Context attention-and-fusion network for multiclass retinal fluid segmentation in OCT images
    Ye, Yanqing
    Chen, Xinjian
    Shi, Fei
    Xiang, Dehui
    Pan, Lingjiao
    Zhu, Weifang
    MEDICAL IMAGING 2021: IMAGE PROCESSING, 2021, 11596
  • [43] A robust segmentation of retinal fluids from OCT images using MCFAR-net
    Pavani, P. Geetha
    Biswal, B.
    Kandula, Srinivasa Rao
    Biswal, P. K.
    Siddartha, G.
    Niranjan, T.
    Subrahmanyam, Bala
    NEUROCOMPUTING, 2024, 599
  • [44] Automatic segmentation of retinal and choroidal thickness in OCT images using convolutional neural networks
    Alonso-Caneiro, David
    Read, Scott A.
    Hamwood, Jared
    Vincent, Stephen
    Collins, Michael J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)
  • [45] Automated retinal layer segmentation in OCT images of age-related macular degeneration
    Chen, Zailiang
    Li, Dabao
    Shen, Hailan
    Mo, Yufang
    Wei, Hao
    Ouyang, Pingbo
    IET IMAGE PROCESSING, 2019, 13 (11) : 1824 - 1834
  • [46] Automated segmentation of outer retinal layers in macular OCT images of patients with retinitis pigmentosa
    Yang, Qi
    Reisman, Charles A.
    Chan, Kinpui
    Ramachandran, Rithambara
    Raza, Ali
    Hood, Donald C.
    BIOMEDICAL OPTICS EXPRESS, 2011, 2 (09): : 2493 - 2503
  • [47] Modeling, Localization, and Segmentation of the Foveal Avascular Zone on Retinal OCT-Angiography Images
    Carmona, Enrique J.
    Diaz, Macarena
    Novo, Jorge
    Ortega, Marcos
    IEEE ACCESS, 2020, 8 : 152223 - 152238
  • [48] A Texture-Based Method for Choroid Segmentation in Retinal EDI-OCT Images
    Gonzalez-Lopez, Ana
    Remeseiro, Beatriz
    Ortega, Marcos
    Penedo, Manuel G.
    Charlon, Pablo
    COMPUTER AIDED SYSTEMS THEORY - EUROCAST 2015, 2015, 9520 : 487 - 493
  • [49] A novel automated segmentation method for retinal layers in OCT images proves retinal degeneration after optic neuritis
    Droby, Amgad
    Panagoulias, Michail
    Albrecht, Philipp
    Reuter, Eva
    Duning, Thomas
    Hildebrandt, Andreas
    Wiendl, Heinz
    Zipp, Frauke
    Methner, Axel
    BRITISH JOURNAL OF OPHTHALMOLOGY, 2016, 100 (04) : 484 - 490
  • [50] Automated 3-D Retinal Layer Segmentation of Macular OCT Images with Retinal Pigment Epithelial Detachments
    Shi, Fei
    Chen, Xinjian
    Zhu, Weifang
    Xiang, Dehui
    Gao, Enting
    Chen, Haoyu
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2014, 55 (13)