Volumetric Feature-Based Alzheimer's Disease Diagnosis From sMRI Data Using a Convolutional Neural Network and a Deep Neural Network

被引:46
|
作者
Basher, Abol [1 ]
Kim, Byeong C. [2 ,4 ]
Lee, Kun Ho [2 ,3 ,5 ]
Jung, Ho Yub [1 ]
机构
[1] Chosun Univ, Dept Comp Engn, Gwangju 61452, South Korea
[2] Chosun Univ, Gwangju Alzheimers Dis & Related Dementias Cohort, Gwangju 61452, South Korea
[3] Chosun Univ, Dept Biomed Sci, Gwangju 61452, South Korea
[4] Chonnam Natl Univ, Dept Neurol, Med Sch, Gwangju 61469, South Korea
[5] Korea Brain Res Inst, Daegu 41062, South Korea
基金
新加坡国家研究基金会;
关键词
Hippocampus; volumetric features; 2-D/3-D patches; hough-CNN; CNN; DNN; MRI; Alzheimer's disease; classification; knowledge transfer; MILD COGNITIVE IMPAIRMENT; ASSOCIATION WORKGROUPS; CEREBROSPINAL-FLUID; NATIONAL INSTITUTE; CSF BIOMARKERS; MRI; RECOMMENDATIONS; CLASSIFICATION; SEGMENTATION; MORPHOMETRY;
D O I
10.1109/ACCESS.2021.3059658
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is mostly prevalent in people older than 65 years. The hippocampus is a widely studied region of interest (ROI) for a number of reasons, such as memory function analysis, stress development observation and neurological disorder investigation. Moreover, hippocampal volume atrophy is known to be linked with Alzheimer's disease. On the other hand, several biomarkers, such as amyloid beta (a beta(42)) protein, tau, phosphorylated tau and hippocampal volume atrophy, are being used to diagnose AD. In this research work, we have proposed a method to diagnose AD based on slice-wise volumetric features extracted from the left and right hippocampi of structural magnetic resonance imaging (sMRI) data. The proposed method is an aggregation of a convolutional neural network (CNN) model with a deep neural network (DNN) model. The left and right hippocampi have been localized automatically using a two-stage ensemble Hough-CNN. The localized hippocampal positions are used to extract (80 x 80x80 voxels) 3-D patches. The 2-D slices are then separated from the 3-D patches along axial, sagittal, and coronal views. The pre-processed 2-D patches are used to extract volumetric features from each slice by using a discrete volume estimation convolutional neural network (DVE-CNN) model. The extracted volumetric features have been used to train and test the classification network. The proposed approach has achieved average weighted classification accuracies of 94.82% and 94.02% based on the extracted volumetric features attributed to the left and right hippocampi, respectively. In addition, it has achieved area under the curve (AUC) values of 92.54% and 90.62% for the left and right hippocampi, respectively. Our method has outperformed the other methods by a certain margin in the same dataset.
引用
收藏
页码:29870 / 29882
页数:13
相关论文
共 50 条
  • [31] Hierarchical Pooling Graph Convolutional Neural Network for Alzheimer’s Disease Diagnosis
    Yang, Zhi (zyang631@hbut.edu.cn), 1600, Springer Science and Business Media Deutschland GmbH (14325 LNAI):
  • [32] Fractional feature-based speech enhancement with deep neural network
    Xu, Liyun
    Zhang, Tong
    SPEECH COMMUNICATION, 2023, 153
  • [33] Automated Medical Diagnosis of Alzheimer´s Disease Using an Efficient Net Convolutional Neural Network
    Deevyankar Agarwal
    Manuel Álvaro Berbís
    Antonio Luna
    Vivian Lipari
    Julien Brito Ballester
    Isabel de la Torre-Díez
    Journal of Medical Systems, 47
  • [34] Automated Medical Diagnosis of Alzheimer's Disease Using an Efficient Net Convolutional Neural Network
    Agarwal, Deevyankar
    Berbis, Manuel Alvaro
    Luna, Antonio
    Lipari, Vivian
    Ballester, Julien Brito
    de la Torre-diez, Isabel
    JOURNAL OF MEDICAL SYSTEMS, 2023, 47 (01)
  • [35] Transformed domain convolutional neural network for Alzheimer?s disease diagnosis using structural MRI
    Abbas, S. Qasim
    Chi, Lianhua
    Chen, Yi-Ping Phoebe
    PATTERN RECOGNITION, 2023, 133
  • [36] Feature-based and Convolutional Neural Network Fusion Method for Visual Relocalization
    Wang, Li
    Li, Ruifeng
    Sun, Jingwen
    Seah, Hock Soon
    Quah, Chee Kwang
    Zhao, Lijun
    2018 15TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION, ROBOTICS AND VISION (ICARCV), 2018, : 1489 - 1495
  • [37] Spatial feature-based convolutional neural network for PolSAR image classification
    Shang, Ronghua
    Wang, Jiaming
    Jiao, Licheng
    Yang, Xiaohui
    Li, Yangyang
    APPLIED SOFT COMPUTING, 2022, 123
  • [38] Deep Convolution Neural Network Based System for Early Diagnosis of Alzheimer's Disease
    Janghel, R. R.
    Rathore, Y. K.
    IRBM, 2021, 42 (04) : 258 - 267
  • [39] 3D Convolutional Neural Network and Stacked Bidirectional Recurrent Neural Network for Alzheimer's Disease Diagnosis
    Feng, Chiyu
    Elazab, Ahmed
    Yang, Peng
    Wang, Tianfu
    Lei, Baiying
    Xiao, Xiaohua
    PREDICTIVE INTELLIGENCE IN MEDICINE, 2018, 11121 : 138 - 146
  • [40] Enhanced Alzheimer’s Disease Classification Using Multilayer Deep Convolutional Neural Network-Based Experimentations
    S. Arun Kumar
    S. Sasikala
    Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 2023, 47 : 1595 - 1621