Volumetric Feature-Based Alzheimer's Disease Diagnosis From sMRI Data Using a Convolutional Neural Network and a Deep Neural Network

被引:46
|
作者
Basher, Abol [1 ]
Kim, Byeong C. [2 ,4 ]
Lee, Kun Ho [2 ,3 ,5 ]
Jung, Ho Yub [1 ]
机构
[1] Chosun Univ, Dept Comp Engn, Gwangju 61452, South Korea
[2] Chosun Univ, Gwangju Alzheimers Dis & Related Dementias Cohort, Gwangju 61452, South Korea
[3] Chosun Univ, Dept Biomed Sci, Gwangju 61452, South Korea
[4] Chonnam Natl Univ, Dept Neurol, Med Sch, Gwangju 61469, South Korea
[5] Korea Brain Res Inst, Daegu 41062, South Korea
基金
新加坡国家研究基金会;
关键词
Hippocampus; volumetric features; 2-D/3-D patches; hough-CNN; CNN; DNN; MRI; Alzheimer's disease; classification; knowledge transfer; MILD COGNITIVE IMPAIRMENT; ASSOCIATION WORKGROUPS; CEREBROSPINAL-FLUID; NATIONAL INSTITUTE; CSF BIOMARKERS; MRI; RECOMMENDATIONS; CLASSIFICATION; SEGMENTATION; MORPHOMETRY;
D O I
10.1109/ACCESS.2021.3059658
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is mostly prevalent in people older than 65 years. The hippocampus is a widely studied region of interest (ROI) for a number of reasons, such as memory function analysis, stress development observation and neurological disorder investigation. Moreover, hippocampal volume atrophy is known to be linked with Alzheimer's disease. On the other hand, several biomarkers, such as amyloid beta (a beta(42)) protein, tau, phosphorylated tau and hippocampal volume atrophy, are being used to diagnose AD. In this research work, we have proposed a method to diagnose AD based on slice-wise volumetric features extracted from the left and right hippocampi of structural magnetic resonance imaging (sMRI) data. The proposed method is an aggregation of a convolutional neural network (CNN) model with a deep neural network (DNN) model. The left and right hippocampi have been localized automatically using a two-stage ensemble Hough-CNN. The localized hippocampal positions are used to extract (80 x 80x80 voxels) 3-D patches. The 2-D slices are then separated from the 3-D patches along axial, sagittal, and coronal views. The pre-processed 2-D patches are used to extract volumetric features from each slice by using a discrete volume estimation convolutional neural network (DVE-CNN) model. The extracted volumetric features have been used to train and test the classification network. The proposed approach has achieved average weighted classification accuracies of 94.82% and 94.02% based on the extracted volumetric features attributed to the left and right hippocampi, respectively. In addition, it has achieved area under the curve (AUC) values of 92.54% and 90.62% for the left and right hippocampi, respectively. Our method has outperformed the other methods by a certain margin in the same dataset.
引用
收藏
页码:29870 / 29882
页数:13
相关论文
共 50 条
  • [1] A Deep Convolutional Neural Network For Early Diagnosis of Alzheimer's Disease
    Liu, Maximus
    Shalaginov, Mikhail Y.
    Liao, Rory
    Zeng, Tingying Helen
    2022 IEEE-EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES, IECBES, 2022, : 58 - 61
  • [2] Detection of Alzheimer's Disease Using Deep Convolutional Neural Network
    Kaur, Swapandeep
    Gupta, Sheifali
    Singh, Swati
    Gupta, Isha
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2022, 22 (03)
  • [3] Land Cover Classification based on Deep Convolutional Neural Network with Feature-based Data Augmentation
    Wang, Bo
    Huang, Chengeng
    Guo, Yuhua
    Tao, Jiahui
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2021, 65 (01)
  • [4] Singer Gender Classification using Feature-based and Spectrograms with Deep Convolutional Neural Network
    Jitendra, Mukkamala S. N., V
    Radhika, Y.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (02) : 135 - 144
  • [5] Feature-Based Interpretation of the Deep Neural Network
    Lee, Eun-Hun
    Kim, Hyeoncheol
    ELECTRONICS, 2021, 10 (21)
  • [6] Deep learning based diagnosis of Parkinson's disease using convolutional neural network
    Sivaranjini, S.
    Sujatha, C. M.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (21-22) : 15467 - 15479
  • [7] Deep learning based diagnosis of Parkinson’s disease using convolutional neural network
    S. Sivaranjini
    C. M. Sujatha
    Multimedia Tools and Applications, 2020, 79 : 15467 - 15479
  • [8] Classification of Alzheimer’s Disease Using Deep Convolutional Spiking Neural Network
    Regina Esi Turkson
    Hong Qu
    Cobbinah Bernard Mawuli
    Moses J. Eghan
    Neural Processing Letters, 2021, 53 : 2649 - 2663
  • [9] Classification of Alzheimer's Disease Using Deep Convolutional Spiking Neural Network
    Turkson, Regina Esi
    Qu, Hong
    Mawuli, Cobbinah Bernard
    Eghan, Moses J.
    NEURAL PROCESSING LETTERS, 2021, 53 (04) : 2649 - 2663
  • [10] Early Diagnosis of Alzheimer's Disease using Convolutional Neural Network-based MRI
    Kadhim, Karrar A.
    Mohamed, Farhan
    Sakran, Ammar AbdRaba
    Adnan, Myasar Mundher
    Salman, Ghalib Ahmed
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2023, 19 (03): : 362 - 368