Resonant Optomechanics with a Vibrating Carbon Nanotube and a Radio-Frequency Cavity

被引:32
|
作者
Ares, N. [1 ]
Pei, T. [1 ]
Mavalankar, A. [1 ]
Mergenthaler, M. [1 ]
Warner, J. H. [1 ]
Briggs, G. A. D. [1 ]
Laird, E. A. [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
MECHANICAL RESONATORS; NANOMECHANICAL MOTION; QUANTUM LIMIT; READOUT; NOISE;
D O I
10.1103/PhysRevLett.117.170801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In an optomechanical setup, the coupling between cavity and resonator can be increased by tuning them to the same frequency. We study this interaction between a carbon nanotube resonator and a radio-frequency tank circuit acting as a cavity. In this resonant regime, the vacuum optomechanical coupling is enhanced by the dc voltage coupling the cavity and the mechanical resonator. Using the cavity to detect the nanotube's motion, we observe and simulate interference between mechanical and electrical oscillations. We measure the mechanical ring down and show that further improvements to the system could enable the measurement of mechanical motion at the quantum limit.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Operation of single-walled carbon nanotube as a radio-frequency single-electron transistor
    Tang, Yong
    Amlani, Islamshah
    Orlov, Alexei O.
    Snider, Gregory L.
    Fay, Patrick J.
    NANOTECHNOLOGY, 2007, 18 (44)
  • [22] Radio-frequency transparent carbon nanotube electrothermal film for radome de-icing application
    Hong, Ji-won
    Jung, Jun Hyuk
    Yong, Seok-min
    Kim, Young-ryeul
    Park, Jinwoo
    Lee, Seung Jun
    Choi, Jae-ho
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2020, 9 (05): : 10854 - 10862
  • [23] Scalable Fabrication of Ambipolar Transistors and Radio-Frequency Circuits Using Aligned Carbon Nanotube Arrays
    Wang, Zhenxing
    Liang, Shibo
    Zhang, Zhiyong
    Liu, Honggang
    Zhong, Hua
    Ye, Lin-Hui
    Wang, Sheng
    Zhou, Weiwei
    Liu, Jie
    Chen, Yabin
    Zhang, Jin
    Peng, Lian-Mao
    ADVANCED MATERIALS, 2014, 26 (04) : 645 - 652
  • [24] Carbon Nanotube/Polyolefin Elastomer Metacomposites with Adjustable Radio-Frequency Negative Permittivity and Negative Permeability
    Luo, Hongchun
    Qiu, Jun
    ADVANCED ELECTRONIC MATERIALS, 2019, 5 (06)
  • [25] Multichannel cavity optomechanics for all-optical amplification of radio frequency signals
    Li, Huan
    Chen, Yu
    Noh, Jong
    Tadesse, Semere
    Li, Mo
    NATURE COMMUNICATIONS, 2012, 3
  • [26] The resonant radio-frequency magnetic probe tuned by coaxial cable
    Sun, B.
    Huo, W. G.
    Ding, Z. F.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (08):
  • [27] Radio-frequency properties of carbon nanotubes and applications
    Mukherjee, Pinaki
    Gupta, Bhaskar
    Hines, Evor L.
    Acta Technica CSAV (Ceskoslovensk Akademie Ved), 2011, 56 (03): : 255 - 270
  • [28] Multiplexed infrared photodetection using resonant radio-frequency circuits
    Liu, R.
    Lu, R.
    Roberts, C.
    Gong, S.
    Allen, J. W.
    Allen, M. S.
    Wenner, B. R.
    Wasserman, D.
    APPLIED PHYSICS LETTERS, 2016, 108 (06)
  • [29] Characterization of etch pits found on a large-grain bulk niobium superconducting radio-frequency resonant cavity
    Zhao, Xin
    Ciovati, G.
    Bieler, T. R.
    PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2010, 13 (12):
  • [30] Superconducting radio-frequency virtual cavity for control algorithms debugging
    Echevarria, Pablo
    Aldekoa, Eukeni
    Jugo, Josu
    Neumann, Axel
    Ushakov, Andriy
    Knobloch, Jens
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2018, 89 (08):