Probabilistic tensor analysis with Akaike and Bayesian information criteria

被引:0
|
作者
Tao, Dacheng [1 ]
Sun, Jimeng [2 ]
Wu, Xindong [3 ]
Li, Xuelong [4 ]
Shen, Jialie [5 ]
Maybank, Stephen J. [4 ]
Faloutsos, Christos [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Hong Kong, Peoples R China
[2] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA USA
[3] Univ Vermont, Dept Comp Sci, Burlington, MA USA
[4] Univ London, Sch Comp Sci & Informat Syst, London, England
[5] Singapore Management Univ, Sch Informat Syst, Singapore 178902, Singapore
来源
基金
中国国家自然科学基金;
关键词
probabilistic inference; Akaike information criterion; Bayesian information criterion; probabilistic principal component analysis; tensor;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
From data mining to computer vision, from visual surveillance to biometrics research, from biomedical imaging to bioinformatics, and from multimedia retrieval to information management, a large amount of data are naturally represented by multidimensional arrays, i.e., tensors. However, conventional probabilistic graphical models with probabilistic inference only model data in vector format, although they are very important in many statistical problems, e.g., model selection. Is it possible to construct multilinear probabilistic graphical models for tensor format data to conduct probabilistic inference, e.g., model selection? This paper provides a positive answer based on the proposed decoupled probabilistic model by developing the probabilistic tensor analysis (PTA), which selects suitable model for tensor format data modeling based on Akaike information criterion (AIC) and Bayesian information criterion (BIC). Empirical studies demonstrate that PTA associated with AIC and BIC selects correct number of models.
引用
收藏
页码:791 / +
页数:3
相关论文
共 50 条
  • [41] The inversion of deep-sea magnetic anomalies using Akaike's Bayesian information criterion
    Honsho, Chie
    Ura, Tamaki
    Tamaki, Kensaku
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2012, 117
  • [42] Mixture structure analysis using the Akaike Information Criterion and the bootstrap
    Solka, JL
    Wegman, EJ
    Priebe, CE
    Poston, WL
    Rogers, GW
    STATISTICS AND COMPUTING, 1998, 8 (03) : 177 - 188
  • [43] Frequency analysis of low flows using the Akaike information criterion
    Lawal, SA
    Watt, WE
    CANADIAN JOURNAL OF CIVIL ENGINEERING, 1996, 23 (06) : 1180 - 1189
  • [44] Properties of the Akaike information criterion
    Awad, AM
    MICROELECTRONICS RELIABILITY, 1996, 36 (04) : 457 - 464
  • [45] A new look at Akaike's Bayesian information criterion for inverse ill-posed problems
    Xu, Peiliang
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (07): : 4077 - 4102
  • [46] Mixture structure analysis using the Akaike Information Criterion and the bootstrap
    Jeffrey L. Solka
    Edward J. Wegman
    Carey E. Priebe
    Wendy L. Poston
    George W. Rogers
    Statistics and Computing, 1998, 8 : 177 - 188
  • [47] Coupling Empirical Bayes and Akaike's Bayesian Information Criterion to Estimate Aquifer Transmissivity Fields
    Zanini, Andrea
    D'Oria, Marco
    Tanda, Maria Giovanna
    Woodbury, Allan D.
    MATHEMATICAL GEOSCIENCES, 2020, 52 (03) : 425 - 441
  • [48] Coupling Empirical Bayes and Akaike’s Bayesian Information Criterion to Estimate Aquifer Transmissivity Fields
    Andrea Zanini
    Marco D’Oria
    Maria Giovanna Tanda
    Allan D. Woodbury
    Mathematical Geosciences, 2020, 52 : 425 - 441
  • [49] Understanding predictive information criteria for Bayesian models
    Andrew Gelman
    Jessica Hwang
    Aki Vehtari
    Statistics and Computing, 2014, 24 : 997 - 1016
  • [50] Information criteria for the predictive evaluation of Bayesian models
    Kitagawa, G
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1997, 26 (09) : 2223 - 2246