On optimal permutation codes

被引:16
|
作者
Goyal, VK [1 ]
Savari, SA
Wang, W
机构
[1] Digital Fountain, Fremont, CA 94538 USA
[2] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
entropy-constrained scalar quantization; vector quantization;
D O I
10.1109/18.959273
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Permutation codes are vector quantizers whose codewords are related by permutations and, in one variant, sign changes. Asymptotically, as the vector dimension grows, optimal Variant I permutation code design is identical to optimal entropy-constrained scalar quantizer (ECSQ) design. However, contradicting intuition and previously published assertions, there are finite block length permutation codes that perform better than the best ones with asymptotically large length; thus, there are Variant I permutation codes whose performances cannot be matched by any ECSQ. Along similar lines, a new asymptotic relation between Variant I and Variant II permutation codes is established but again demonstrated to not necessarily predict the performances of short codes. Simple expressions for permutation code performance are found for memoryless uniform and Laplacian sources. The uniform source yields the aforementioned counterexamples.
引用
收藏
页码:2961 / 2971
页数:11
相关论文
共 50 条
  • [41] Permutation-invariant quantum codes
    Ouyang, Yingkai
    PHYSICAL REVIEW A, 2014, 90 (06):
  • [42] OPTIMAL PERMUTATION OF A PENDULUM
    CHERNOUSKO, FL
    PRIKLADNAYA MATEMATIKA I MEKHANIKA, 1975, 39 (05): : 806 - 816
  • [43] Good Synchronization Sequences for Permutation Codes
    Shongwe, Thokozani
    Swart, Theo G.
    Ferreira, Hendrik C.
    Tran Van Trung
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2012, 60 (05) : 1204 - 1208
  • [44] Permutation polynomials for interleavers in turbo codes
    Bravo, CJC
    Kumar, PV
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 318 - 318
  • [45] MINIMUM ENTROPY QUANTIZERS AND PERMUTATION CODES
    BERGER, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1982, 28 (02) : 149 - 157
  • [46] On symbol permutation invariant balanced codes
    Mascella, R
    Tallini, LG
    2005 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), VOLS 1 AND 2, 2005, : 2100 - 2104
  • [47] EQUIVALENCE OF RANK PERMUTATION CODES TO A NEW CLASS OF BINARY CODES
    CHADWICK, HD
    REED, IS
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (05) : 640 - +
  • [48] An enumerative method for runlength-limited codes: Permutation codes
    Datta, S
    McLaughlin, SW
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) : 2199 - 2204
  • [49] A note on good permutation codes from Reed–Solomon codes
    R. Sobhani
    A. Abdollahi
    J. Bagherian
    M. Khatami
    Designs, Codes and Cryptography, 2019, 87 : 2335 - 2340
  • [50] On Concentric Spherical Codes and Permutation Codes With Multiple Initial Codewords
    Nguyen, Ha Q.
    Goyal, Vivek K.
    Varshney, Lay R.
    2009 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1- 4, 2009, : 2038 - 2042