On optimal permutation codes

被引:16
|
作者
Goyal, VK [1 ]
Savari, SA
Wang, W
机构
[1] Digital Fountain, Fremont, CA 94538 USA
[2] Bell Labs, Lucent Technol, Murray Hill, NJ 07974 USA
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
entropy-constrained scalar quantization; vector quantization;
D O I
10.1109/18.959273
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Permutation codes are vector quantizers whose codewords are related by permutations and, in one variant, sign changes. Asymptotically, as the vector dimension grows, optimal Variant I permutation code design is identical to optimal entropy-constrained scalar quantizer (ECSQ) design. However, contradicting intuition and previously published assertions, there are finite block length permutation codes that perform better than the best ones with asymptotically large length; thus, there are Variant I permutation codes whose performances cannot be matched by any ECSQ. Along similar lines, a new asymptotic relation between Variant I and Variant II permutation codes is established but again demonstrated to not necessarily predict the performances of short codes. Simple expressions for permutation code performance are found for memoryless uniform and Laplacian sources. The uniform source yields the aforementioned counterexamples.
引用
收藏
页码:2961 / 2971
页数:11
相关论文
共 50 条
  • [1] Optimal permutation codes for the Gaussian channel
    Karlof, JK
    Chang, YO
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (01) : 356 - 358
  • [2] Order-Optimal Permutation Codes in the Generalized Cayley Metric
    Yang, Siyi
    Schoeny, Clayton
    Dolecek, Lara
    2017 IEEE INFORMATION THEORY WORKSHOP (ITW), 2017, : 234 - 238
  • [3] Permutation codes
    Cameron, Peter J.
    EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (02) : 482 - 490
  • [4] Representing group codes as permutation codes
    Biglieri, E
    Karlof, JK
    Viterbo, E
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) : 2204 - 2207
  • [5] A bound on permutation codes
    Bierbrauer, Juergen
    Metsch, Klaus
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (03):
  • [6] Stirling permutation codes
    Ma, Shi-Mei
    Qi, Hao
    Yeh, Jean
    Yeh, Yeong-Nan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2023, 199
  • [7] STIRLING PERMUTATION CODES
    Ma, Shi-Mei
    Qi, Hao
    Yeh, Jean
    Yeh, Yeong-Nan
    arXiv, 2022,
  • [8] Twisted permutation codes
    Gillespie, Neil I.
    Praeger, Cheryl E.
    Spiga, Pablo
    JOURNAL OF GROUP THEORY, 2015, 18 (03) : 407 - 433
  • [9] Remoteness of permutation codes
    Cameron, Peter J.
    Gadouleau, Maximilien
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (06) : 1273 - 1285
  • [10] PERMUTATION CODES AND STEGANOGRAPHY
    Balado, Felix
    Haughton, David
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 2954 - 2958