Volume of minimal hypersurfaces in manifolds with nonnegative Ricci curvature
被引:9
|
作者:
Sabourau, Stephane
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Est, Lab Anal & Math Appl, UMR 8050, UPEC,UPEMLV,CNRS, F-94010 Creteil, FranceUniv Paris Est, Lab Anal & Math Appl, UMR 8050, UPEC,UPEMLV,CNRS, F-94010 Creteil, France
Sabourau, Stephane
[1
]
机构:
[1] Univ Paris Est, Lab Anal & Math Appl, UMR 8050, UPEC,UPEMLV,CNRS, F-94010 Creteil, France
We establish a min-max estimate on the volume width of a closed Riemannian manifold with nonnegative Ricci curvature. More precisely, we show that every closed Riemannian manifold with nonnegative Ricci curvature admits a PL Morse function whose level set volume is bounded in terms of the volume of the manifold. As a consequence of this sweep-out estimate, there exists an embedded, closed (possibly singular) minimal hypersurface whose volume is bounded in terms of the volume of the manifold.
机构:
Capital Normal Univ, Sch Math Sci, 105 West Third Ring Rd North, Beijing 100048, Peoples R ChinaCapital Normal Univ, Sch Math Sci, 105 West Third Ring Rd North, Beijing 100048, Peoples R China
Zhou, Jie
Zhu, Jintian
论文数: 0引用数: 0
h-index: 0
机构:
Westlake Univ, Inst Theoret Sci, 600 Dunyu Rd, Hangzhou 310030, Zhejiang, Peoples R ChinaCapital Normal Univ, Sch Math Sci, 105 West Third Ring Rd North, Beijing 100048, Peoples R China
Zhu, Jintian
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK,
2025,