Free boundary equilibrium in 3D tokamaks with toroidal rotation

被引:2
|
作者
Cooper, W. A. [1 ]
Brunetti, D. [1 ]
Faustin, J. M. [1 ]
Graves, J. P. [1 ]
Pfefferle, D. [1 ,27 ]
Raghunathan, M. [1 ]
Sauter, O. [1 ,27 ]
Tran, T. M. [1 ]
Chapman, I. T. [2 ,7 ]
Ham, C. J. [2 ]
Aiba, N. [3 ]
Abhangi, M. [38 ]
Abreu, P. [44 ]
Aftanas, M. [41 ]
Afzal, M. [7 ]
Aggarwal, K. M. [24 ]
Aho-Mantila, L. [98 ]
Ahonen, E. [5 ]
Aints, M. [94 ]
Airila, M. [98 ]
Albanese, R. [92 ]
Alegre, D. [50 ]
Alessi, E. [37 ]
Aleynikov, P. [46 ]
Alfier, A. [11 ]
Alkseev, A. [59 ]
Allan, P. [7 ]
Almaviva, S. [83 ]
Alonso, A. [50 ]
Alper, B. [7 ]
Alsworth, I. [7 ]
Alves, D. [44 ]
Ambrosino, G. [92 ]
Ambrosino, R. [93 ]
Amosov, V. [76 ]
Andersson, F. [15 ]
Andersson Sunden, E. [19 ]
Angelone, M. [78 ]
Anghel, A. [73 ]
Anghel, M. [72 ]
Angioni, C. [53 ]
Appel, L. [7 ]
Apruzzese, G. [78 ]
Arena, P. [25 ]
Ariola, M. [93 ]
Arnichand, H. [8 ]
Arnoux, G. [7 ]
Arshad, S. [34 ]
Ash, A. [7 ]
Asp, E. [19 ]
机构
[1] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland
[2] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[3] Japan Atom Energy Agcy, Rokkasho, Japan
[4] Culham Sci Ctr, EUROfus Consortium, JET, Abingdon OX14 3DB, Oxon, England
[5] Aalto Univ, FIN-00076 Aalto, Finland
[6] BCS, Barcelona, Spain
[7] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
[8] IRFM, CEA, F-13108 St Paul Les Durance, France
[9] Ctr Brasileiro Pesquisas Fis, BR-22290180 Rio De Janeiro, Brazil
[10] Consorzio CREATE, I-80125 Naples, Italy
[11] Consorzio RFX, I-35127 Padua, Italy
[12] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[13] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[14] Univ Ghent, Dept Appl Phys, B-9000 Ghent, Belgium
[15] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[16] Univ Cagliari, Dept Elect & Elect Engn, I-09123 Cagliari, Italy
[17] Comenius Univ, Fac Math Phys & Informat, Dept Expt Phys, Bratislava 84248, Slovakia
[18] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[19] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[20] Lund Univ, Dept Phys, SE-22100 Lund, Sweden
[21] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[22] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[23] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[24] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[25] Univ Catania, Dipartimento Ingn Elettr Elettr & Sistemi, I-95125 Catania, Italy
[26] Dublin City Univ, Dublin, Ireland
[27] CRPP, EPFL, CH-1015 Lausanne, Switzerland
[28] CNRS, UMR 7648, Ecole Polytech, F-91128 Palaiseau, France
[29] EUROfus Programme Management Unit, D-85748 Garching, Germany
[30] Culham Sci Ctr, EUROfus Programme Management Unit, Abingdon OX14 3DB, Oxon, England
[31] European Commiss, B-1049 Brussels, Belgium
[32] FOM Inst DIFFER, NL-3430 BE Nieuwegein, Netherlands
[33] Forsch Zentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[34] Fus Energy Joint Undertaking, Barcelona 08019, Spain
[35] KTH, EES, Fus Plasma Phys, SE-10044 Stockholm, Sweden
[36] Gen Atom, San Diego, CA 85608 USA
[37] IFP CNR, I-20125 Milan, Italy
[38] Inst Plasma Res, Gandhinagar 382428G, Gujarat, India
[39] Bulgarian Acad Sci, Inst Elect, BU-1784 Sofia, Bulgaria
[40] Inst Plasma Phys & Laser Microfus, PL-01497 Warsaw, Poland
[41] Inst Plasma Phys AS CR, Prague 182 00 8, Czech Republic
[42] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[43] Univ Sao Paulo, Inst Fis, BR-05508090 Sao Paulo, Brazil
[44] Univ Lisbon, Inst Super Tecn, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[45] Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[46] ITER Org, F-13067 St Paul Les Durance, France
[47] Naka Fus Res Estab, Japan Atom Energy Agcy, Naka 3110913, Ibaraki, Japan
[48] Karlsruhe Inst Technol, D-76021 Karlsruhe, Germany
[49] Univ Nice Sophia Antipolis, Lab JA Dieudonne, F-06108 Nice 2, France
[50] CIEMAT, Lab Nacl Fus, Madrid, Spain
基金
瑞士国家科学基金会;
关键词
3D equilibrium; toroidal rotation; long-lived mode; snake; error field correction coil; saturated ideal kink; STABILITY; PLASMA; MODE;
D O I
10.1088/0029-5515/55/6/063032
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The three-dimensional VMEC equilibrium solver has been adapted to numerically investigate the approximate toroidal rotation model we have derived. We concentrate our applications on the simulation of JET snakes and MAST long-lived modes under free boundary conditions. Helical core solutions are triggered when <beta > exceeds a threshold value, typically 2.7% in JET-like plasmas. A large plasma current and edge bootstrap current can drive helical core formations at arbitrarily small <alpha > in which the ideal saturated internal kink coexists with an ideal saturated external kink structure of opposite phase. The centrifugal force linked with the rotation has the effect of displacing the plasma column away from the major axis, but does not alter significantly the magnitude of the edge corrugation of the plasma. Error field correction coil currents in JET-like configurations increase the outer midplane distortions by 2 cm. The edge bootstrap current enhances the edge modulation of the plasma driven by the core snake deformations in MAST.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Intrinsic toroidal rotation in the scrape-off layer of tokamaks
    Loizu, J.
    Ricci, P.
    Halpern, F. D.
    Jolliet, S.
    Mosetto, A.
    PHYSICS OF PLASMAS, 2014, 21 (06)
  • [22] MHD instabilities in 3D tokamaks
    Strumberger, E.
    Guenter, S.
    Tichmann, C.
    NUCLEAR FUSION, 2014, 54 (06)
  • [23] Stabilization mechanism of ballooning modes by toroidal rotation shear in tokamaks
    Furukawa, M
    Tokuda, S
    NUCLEAR FUSION, 2005, 45 (05) : 377 - 383
  • [24] Inter-machine comparison of intrinsic toroidal rotation in tokamaks
    Rice, J. E.
    Ince-Cushman, A.
    deGrassie, J. S.
    Eriksson, L. -G.
    Sakamoto, Y.
    Scarabosio, A.
    Bortolon, A.
    Burrell, K. H.
    Duval, B. P.
    Fenzi-Bonizec, C.
    Greenwald, M. J.
    Groebner, R. J.
    Hoang, G. T.
    Koide, Y.
    Marmar, E. S.
    Pochelon, A.
    Podpaly, Y.
    NUCLEAR FUSION, 2007, 47 (11) : 1618 - 1624
  • [25] The effects of toroidal equilibrium flow on the stabilization of ballooning modes in tokamaks
    Hu, Yanqiang
    Hu, Yemin
    Xiang, Nong
    Huang, Yanqing
    Zheng, Zhen
    AIP ADVANCES, 2020, 10 (07)
  • [26] Effects of neoclassical toroidal viscosity induced by the intrinsic error fields and toroidal field ripple on the toroidal rotation in tokamaks
    Lee, H. H.
    Seol, J.
    Ko, W. H.
    Terzolo, L.
    Aydemir, A. Y.
    In, Y.
    Ghim, Y. -C.
    Lee, S. G.
    PHYSICS OF PLASMAS, 2016, 23 (08)
  • [27] Solving the 3D MHD equilibrium equations in toroidal geometry by Newton's method
    Oliver, HJ
    Reiman, AH
    Monticello, DA
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 211 (01) : 99 - 128
  • [28] Experimental analyses and predictive simulations of toroidal rotation driven by the neoclassical toroidal viscosity in rippled tokamaks
    Honda, M.
    Satake, S.
    Suzuki, Y.
    Matsunaga, G.
    Shinohara, K.
    Yoshida, M.
    Matsuyama, A.
    Ide, S.
    Urano, H.
    NUCLEAR FUSION, 2014, 54 (11)
  • [29] Effect of toroidal rotation on the localized modes in low beta circular tokamaks
    Zheng, LJ
    Chu, MS
    Chen, L
    PHYSICS OF PLASMAS, 1999, 6 (04) : 1217 - 1226
  • [30] Mechanisms for generating toroidal rotation in tokamaks without external momentum input
    Solomon, W. M.
    Burrell, K. H.
    Garofalo, A. M.
    Kaye, S. M.
    Bell, R. E.
    Cole, A. J.
    deGrassie, J. S.
    Diamond, P. H.
    Hahm, T. S.
    Jackson, G. L.
    Lanctot, M. J.
    Petty, C. C.
    Reimerdes, H.
    Sabbagh, S. A.
    Strait, E. J.
    Tala, T.
    Waltz, R. E.
    PHYSICS OF PLASMAS, 2010, 17 (05)