THE FERMI GAMMA-RAY HAZE FROM DARK MATTER ANNIHILATIONS AND ANISOTROPIC DIFFUSION

被引:34
|
作者
Dobler, Gregory [1 ]
Cholis, Ilias [2 ,3 ,4 ]
Weiner, Neal [4 ,5 ]
机构
[1] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
[2] Ist Nazl Fis Nucl, Sez Trieste, I-34136 Trieste, Italy
[3] Scuola Int Super Studi Avanzati, Astrophys Sect, I-34136 Trieste, Italy
[4] NYU, Dept Phys, Ctr Cosmol & Particle Phys, New York, NY 10003 USA
[5] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
来源
ASTROPHYSICAL JOURNAL | 2011年 / 741卷 / 01期
基金
美国国家科学基金会;
关键词
astroparticle physics; dark matter; diffusion; Galaxy: halo; gamma rays: ISM; LARGE-AREA TELESCOPE; GALACTIC MAGNETIC-FIELD; ENERGY COSMIC-RAYS; MILKY-WAY; MILLISECOND PULSARS; SPINNING DUST; GALAXY; EMISSION; PROPAGATION; IDENTIFICATION;
D O I
10.1088/0004-637X/741/1/25
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent full-sky maps of the Galaxy from the Fermi Gamma-Ray Space Telescope have revealed a diffuse component of emission toward the Galactic center and extending up to roughly +/- 50 degrees in latitude. This Fermi "haze" is the inverse Compton emission generated by the same electrons that generate the microwave synchrotron haze at Wilkinson Microwave Anisotropy Probe wavelengths. The gamma-ray haze has two distinct characteristics: the spectrum is significantly harder than emission elsewhere in the Galaxy and the morphology is elongated in latitude with respect to longitude with an axis ratio of approximate to 2. If these electrons are generated through annihilations of dark matter (DM) particles in the Galactic halo, this morphology is difficult to realize with a standard spherical halo and isotropic cosmic-ray (CR) diffusion. However, we show that anisotropic diffusion along ordered magnetic field lines toward the center of the Galaxy coupled with a prolate DM halo can easily yield the required morphology without making unrealistic assumptions about diffusion parameters. Furthermore, a Sommerfeld enhancement to the self-annihilation cross-section of similar to 30 yields a good fit to the morphology, amplitude, and spectrum of both the gamma-ray and microwave haze. The model is also consistent with local CR measurements as well as cosmic microwave background constraints.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Secluded singlet fermionic dark matter driven by the Fermi gamma-ray excess
    Kim, Yeong Gyun
    Lee, Kang Young
    Park, Chan Beom
    Shin, Seodong
    PHYSICAL REVIEW D, 2016, 93 (07)
  • [22] Fermi's SIBYL: mining the gamma-ray sky for dark matter subhaloes
    Mirabal, N.
    Frias-Martinez, V.
    Hassan, T.
    Frias-Martinez, E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 424 (01) : L64 - L68
  • [23] Gamma-ray anisotropies from decaying dark matter
    Weniger, C.
    COSMIC RAYS FOR PARTICLE AND ASTROPARTICLE PHYSICS, 2011, 6 : 632 - 640
  • [24] Gamma-ray lines from dark matter decay
    Ibarra, Alejandro
    7TH INTERNATIONAL WORKSHOP ON THE DARK SIDE OF THE UNIVERSE (DSU 2011), 2012, 384
  • [25] GAMMA-RAY SIGNATURES OF DARK MATTER
    BERGSTROM, L
    TAUP 89: WORKSHOP ON THEORETICAL AND PHENOMENOLOGICAL ASPECTS OF UNDERGROUND PHYSICS, 1989, : 347 - 352
  • [26] Gamma-ray signatures of Dark Matter
    Cirelli, Marco
    RICAP16, 6TH ROMA INTERNATIONAL CONFERENCE ON ASTROPARTICLE PHYSICS, 2017, 136
  • [27] Extending Fermi-LAT and HESS limits on gamma-ray lines from dark matter annihilation
    Profumo, Stefano
    Queiroz, Farinaldo S.
    Yaguna, Carlos E.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 461 (04) : 3976 - 3981
  • [28] Interpretation of the gamma-ray excess and AMS-02 antiprotons: Velocity dependent dark matter annihilations
    Jia, Lian-Bao
    PHYSICAL REVIEW D, 2017, 96 (05)
  • [29] Polarized gamma rays from dark matter annihilations
    Huang, Wei-Chih
    Ng, Kin-Wang
    PHYSICS LETTERS B, 2018, 783 : 29 - 35
  • [30] Spherical harmonics analysis of Fermi gamma-ray data and the Galactic dark matter halo
    Malyshev, Dmitry
    Bovy, Jo
    Cholis, Ilias
    PHYSICAL REVIEW D, 2011, 84 (02):