Solid-State Fabrication of SnS2/C Nanospheres for High-Performance Sodium Ion Battery Anode

被引:177
|
作者
Wang, Jingjing [2 ]
Luo, Chao [1 ]
Mao, Jianfeng [1 ]
Zhu, Yujie [1 ]
Fan, Xiulin [1 ]
Gao, Tao [1 ]
Mignerey, Alice C. [2 ]
Wang, Chunsheng [1 ]
机构
[1] Univ Maryland, Dept Chem & Biochem, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Chem & Biomol Engn, College Pk, MD 20742 USA
关键词
tin disulfide; solid-state synthesis; nanospheres; anode; sodium-ion batteries; cycling stability; TRANSITION-METAL OXIDES; LITHIUM-ION; HIGH-CAPACITY; GRAPHENE OXIDE; CYCLE LIFE; STORAGE; COMPOSITE; CAPABILITY; STABILITY; INSERTION;
D O I
10.1021/acsami.5b02413
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tin disulfide (SnS2) has emerged as a promising anode material for sodium ion batteries (NIBs) due to its unique layered structure, high theoretical capacity, and low cost. Conventional SnS2 nanomaterials are normally synthesized using hydrothermal method, which is time-consuming and difficult to scale up for mass production. In this study, we develop a simple solid-state reaction method, in which the carbon-coated SnS2 (SnS2/C) anode materials were synthesized by annealing metallic Sn, sulfur powder, and polyacrylonitrile in a sealed vacuum glass tube. The SnS2/C nanospheres with unique layered structure exhibit a high reversible capacity of 660 mAh g(-1) at a current density of 50 mA g(-1) and maintain at 570 mAh g(-1) for 100 cycles with a degradation rate of 0.14% per cycle, demonstrating one of the best cycling performances in all reported SnS2/C anodes for NIBs to date. The superior cycling stability of SnS2/C electrode is attributed to the stable nanosphere morphology and structural integrity during charge/discharge cycles as evidenced by ex situ characterization.
引用
收藏
页码:11476 / 11481
页数:6
相关论文
共 50 条
  • [41] FeS2@TiO2 nanorods as high-performance anode for sodium ion battery
    Lu, Zhenxiao
    Wang, Wenxian
    Zhou, Jun
    Bai, Zhongchao
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2020, 28 (10) : 2699 - 2706
  • [42] Preferential c-Axis Orientation of Ultrathin SnS2 Nanoplates on Graphene as High-Performance Anode for Li-Ion Batteries
    Liu, Shuangyu
    Lu, Xiang
    Xie, Jian
    Cao, Gaoshao
    Zhu, Tiejun
    Zhao, Xinbing
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (05) : 1588 - 1595
  • [43] Elaborate interface design of SnS2/SnO2@C/rGO nanocomposite as a high-performance anode for lithium-ion batteries
    Jin, Shuangling
    Gu, Feijiao
    Wang, Jitong
    Ma, Xia
    Qian, Chenliang
    Lan, Yaxin
    Han, Qi
    Li, Junqiang
    Wang, Xiaorui
    Zhang, Rui
    Qiao, Wenming
    Ling, Licheng
    Jin, Minglin
    ELECTROCHIMICA ACTA, 2022, 405
  • [44] SnS2 Nanosheets with RGO Modification as High-Performance Anode Materials for Na-Ion and K-Ion Batteries
    Wu, Leqiang
    Shao, Hengjia
    Yang, Chen
    Feng, Xiangmin
    Han, Linxuan
    Zhou, Yanli
    Du, Wei
    Sun, Xueqin
    Xu, Zhijun
    Zhang, Xiaoyu
    Jiang, Fuyi
    Dong, Caifu
    NANOMATERIALS, 2021, 11 (08)
  • [45] Flexible free-standing SnS2/carbon nanofibers anode for high performance sodium-ion batteries
    Chen, Geshuang
    Yao, Xiang
    Cao, Qichen
    Ding, Shouxiang
    He, Jinde
    Wang, Suqing
    MATERIALS LETTERS, 2019, 234 : 121 - 124
  • [46] Na-K Alloy Anode for High-Performance Solid-State Sodium Metal Batteries
    Cheng, Yifeng
    Li, Menghao
    Yang, Xuming
    Lu, Xinzhen
    Wu, Duojie
    Zhang, Qing
    Zhu, Yuanmin
    Gu, Meng
    NANO LETTERS, 2022, 22 (23) : 9614 - 9620
  • [47] Synthesis and high-performance of carbonaceous polypyrrole nanotubes coated with SnS2 nanosheets anode materials for lithium ion batteries
    Chen, Xuefang
    Huang, Ying
    Zhang, Kaichuang
    Feng, XuanSheng
    Wang, Mingyue
    CHEMICAL ENGINEERING JOURNAL, 2017, 330 : 470 - 479
  • [48] Hierarchical three-dimensional porous SnS2/carbon cloth anode for high-performance lithium ion batteries
    Chao, Junfeng
    Zhang, Xiutai
    Xing, Shumin
    Fan, Qiufeng
    Yang, Junping
    Zhao, Luhua
    Li, Xiang
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2016, 210 : 24 - 28
  • [49] Multiwalled Carbon Nanotubes Anchored with SnS2 Nanosheets as High-Performance Anode Materials of Lithium-Ion Batteries
    Zhai, Chuanxin
    Du, Ning
    Zhang, Hui
    Yu, Jingxue
    Yang, Deren
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (10) : 4067 - 4074
  • [50] Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance Li-ion battery
    Lu, Bing
    Ma, Bingjie
    Deng, Xinglan
    Wu, Bing
    Wu, Zhenyu
    Luo, Jing
    Wang, Xianyou
    Chen, Gairong
    CHEMICAL ENGINEERING JOURNAL, 2018, 351 : 269 - 279