Self-Supervised Video Super-Resolution by Spatial Constraint and Temporal Fusion

被引:6
|
作者
Yang, Cuixin [1 ,2 ,3 ,4 ,5 ]
Luo, Hongming [1 ,2 ,3 ,4 ,5 ]
Liao, Guangsen [1 ,2 ,3 ,4 ,5 ]
Lu, Zitao [1 ,2 ,3 ,4 ,5 ]
Zhou, Fei [1 ,2 ,3 ,4 ,5 ]
Qiu, Guoping [1 ,3 ,4 ,5 ]
机构
[1] Shenzhen Univ, Coll Elect & Informat Engn, Shenzhen, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Guangdong Key Lab Intelligent Informat Proc, Shenzhen, Peoples R China
[4] Shenzhen Inst Artificial Intelligence & Robot Soc, Shenzhen, Peoples R China
[5] Key Lab Digital Creat Technol, Shenzhen, Peoples R China
关键词
Video super-resolution; Self-supervision; Deep learning;
D O I
10.1007/978-3-030-88010-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To avoid any fallacious assumption on the degeneration procedure in preparing training data, some self-similarity based super-resolution (SR) algorithms have been proposed to exploit the internal recurrence of patches without relying on external datasets. However, the network architectures of those "zero-shot" SR methods are often shallow. Otherwise they would suffer from the over-fitting problem due to the limited samples within a single image. This restricts the strong power of deep neural networks (DNNs). To relieve this problem, we propose a middle-layer feature loss to allow the network architecture to be deeper for handling the video super-resolution (VSR) task in a self-supervised way. Specifically, we constrain the middle-layer feature of VSR network to be as similar as that of the corresponding single image super-resolution (SISR) in a Spatial Module, then fuse the inter-frame information in a Temporal Fusion Module. Experimental results demonstrate that the proposed algorithm achieves significantly superior results on real-world data in comparison with some state-of-the-art methods.
引用
收藏
页码:249 / 260
页数:12
相关论文
共 50 条
  • [31] Transformer-based self-supervised image super-resolution method for Rotating Synthetic Aperture system via multi-temporal fusion
    Sun, Yu
    Zhi, Xiyang
    Jiang, Shikai
    Fan, Guanghua
    Shi, Tianjun
    Yan, Xu
    INFORMATION FUSION, 2024, 108
  • [32] Conditional Neural Video Coding with Spatial-Temporal Super-Resolution
    Wang, Henan
    Pan, Xiaohan
    Feng, Runsen
    Guo, Zongyu
    Chen, Zhibo
    2024 DATA COMPRESSION CONFERENCE, DCC, 2024, : 591 - 591
  • [33] Learning a spatial-temporal symmetry network for video super-resolution
    Xiaohang Wang
    Mingliang Liu
    Pengying Wei
    Applied Intelligence, 2023, 53 : 3530 - 3544
  • [34] CTVSR: Collaborative Spatial-Temporal Transformer for Video Super-Resolution
    Tang, Jun
    Lu, Chenyan
    Liu, Zhengxue
    Li, Jiale
    Dai, Hang
    Ding, Yong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (06) : 5018 - 5032
  • [35] Deformable Spatial-Temporal Attention for Lightweight Video Super-Resolution
    Xue, Tong
    Huang, Xinyi
    Li, Dengshi
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT X, 2024, 14434 : 482 - 493
  • [36] Learning a spatial-temporal symmetry network for video super-resolution
    Wang, Xiaohang
    Liu, Mingliang
    Wei, Pengying
    APPLIED INTELLIGENCE, 2023, 53 (03) : 3530 - 3544
  • [37] Self-Supervised Pretraining for Stereoscopic Image Super-Resolution With Parallax-Aware Masking
    Zhang, Zhe
    Lei, Jianjun
    Peng, Bo
    Zhu, Jie
    Huang, Qingming
    IEEE TRANSACTIONS ON BROADCASTING, 2024, 70 (02) : 482 - 491
  • [38] Style Transfer and Self-Supervised Learning Powered Myocardium Infarction Super-Resolution Segmentation
    Wang, Lichao
    Huang, Jiahao
    Xing, Xiaodan
    Wu, Yinzhe
    Rajakulasingam, Ramyah
    Scott, Andrew D.
    Ferreira, Pedro F.
    De Silva, Ranil
    Nielles-Vallespin, Sonia
    Yang, Guang
    2023 19TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, SIPAIM, 2023,
  • [39] Self-Supervised Super-Resolution for Multi-Exposure Push-Frame Satellites
    Ngoc Long Nguyen
    Anger, Jeremy
    Davy, Axel
    Arias, Pablo
    Facciolo, Gabriele
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 1848 - 1858
  • [40] Efficient Spatio-Temporal Network with Gated Fusion for Video Super-Resolution
    Li, Changyu
    Zhang, Dongyang
    Xie, Ning
    Shao, Jie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2021, PT V, 2021, 12895 : 640 - 651