Scattering loss analysis and structure optimization of hollow-core photonic bandgap fiber

被引:0
|
作者
Song, Jingming [1 ]
Wu, Rong [1 ]
Sun, Kang [1 ]
Xu, Xiaoliang [2 ]
机构
[1] Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Beijing, Peoples R China
[2] Acad Equipment, Changping NCO Sch, Beijing, Peoples R China
关键词
Hollow-core photonic bandgap fiber; Scattering loss; Normalized interface field intensity; CRYSTAL FIBERS; AIR; GYROSCOPE; SENSITIVITY; LIGHT;
D O I
10.1007/s10043-016-0206-x
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Effects of core structure in 7 cell hollow-core photonic bandgap fibers (HC-PBGFs) on scattering loss are analyzed by means of investigating normalized interface field intensity. Fibers with different core wall thickness, core radius and rounding corner of air hole are simulated. Results show that with thick core wall and expanded core radius, scattering loss could be greatly reduced. The scattering loss of the HC-PBGFs in the wavelength range of 1.5-1.56 mu m could be decreased by about 50 % of the present level with optimized core structure design.
引用
收藏
页码:420 / 425
页数:6
相关论文
共 50 条
  • [21] Investigation of Interstice Collapse for Hollow-Core Photonic Bandgap Fiber Fabrication
    Song Ningfang
    Gao Fuyu
    Xu Xiaobin
    Cai Wei
    Li Wei
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2018, 30 (07) : 638 - 641
  • [22] Hollow-Core Photonic-Bandgap Fiber Resonator for Rotation Sensing
    Fsaifes, I.
    Feugnet, G.
    Baz, A.
    Ravaille, A.
    Debord, B.
    Gerome, F.
    Humbert, G.
    Schwartz, S.
    Benabid, F.
    Bretenaker, F.
    2016 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2016,
  • [23] Study of birefringence and mode field for hollow-core photonic bandgap fiber
    Feng, Lishuang
    Song, Wenshuai
    Ren, Xiaoyuan
    MICRO-NANO TECHNOLOGY XV, 2014, 609-610 : 324 - 329
  • [24] NIR Spectrum Analysis of Natural Gas Based on Hollow-Core Photonic Bandgap Fiber
    Li, Xuefeng
    Liang, Jinxing
    Lin, Shuo
    Zimin, Yury
    Zhang, Yupeng
    Ueda, Toshitsugu
    IEEE SENSORS JOURNAL, 2012, 12 (07) : 2362 - 2367
  • [25] Simple analysis of water-filled hollow-core silica photonic bandgap fiber
    Kubota, Hirokazu
    Kawanishi, Satoki
    Notomi, Masaya
    IEICE ELECTRONICS EXPRESS, 2009, 6 (12): : 870 - 875
  • [26] Accurate Control of Surface Modes in a Hollow-Core Photonic Bandgap Fiber
    You, Yong
    Liu, Yan-Ge
    Hao, Yundong
    Guo, Huiyi
    Wang, Zhi
    IEEE PHOTONICS JOURNAL, 2022, 14 (01):
  • [27] Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength
    Bouwmans, G
    Luan, F
    Knight, JC
    Russell, PSJ
    Farr, L
    Mangan, BJ
    Sabert, H
    OPTICS EXPRESS, 2003, 11 (14): : 1613 - 1620
  • [28] Gas diffusion measurement using hollow-core photonic bandgap fiber
    Hoo, YL
    Jin, W
    Ho, HL
    Ju, J
    Wang, DN
    SENSORS AND ACTUATORS B-CHEMICAL, 2005, 105 (02) : 183 - 186
  • [29] Speed of Light in Hollow-Core Photonic Bandgap Fiber Approaching That in Vacuum
    Cao, Xiaolu
    Luo, Mingming
    Liu, Jianfei
    Ma, Jie
    Hao, Yundong
    Liu, Yange
    SENSORS, 2024, 24 (21)
  • [30] Experimental Study on the Concept of Hollow-Core Photonic Bandgap Fiber Stethoscope
    Abdallah, Add
    INTERNATIONAL JOURNAL OF OPTICS, 2018, 2018