The dawn of non-Hermitian optics

被引:137
|
作者
El-Ganainy, Ramy [1 ,2 ,3 ]
Khajavikhan, Mercedeh [4 ]
Christodoulides, Demetrios N. [4 ]
Ozdemir, Sahin K. [5 ,6 ]
机构
[1] Michigan Technol Univ, Dept Phys, Houghton, MI 49931 USA
[2] Michigan Technol Univ, Henes Ctr Quantum Phenomena, Houghton, MI 49931 USA
[3] Michigan Technol Univ, Dept Elect & Comp Engn, Houghton, MI 49931 USA
[4] Univ Cent Florida, Coll Opt & Photon CREOL, Orlando, FL 32816 USA
[5] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[6] Penn State Univ, Mat Res Inst, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
PARITY-TIME SYMMETRY; PARAMETRIC AMPLIFICATION; WAVE-GUIDE; LASER;
D O I
10.1038/s42005-019-0130-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent years have seen a tremendous progress in the theory and experimental implementations of non-Hermitian photonics, including all-lossy optical systems as well as parity-time symmetric systems consisting of both optical loss and gain. This progress has led to a host of new intriguing results in the physics of light-matter interactions with promising potential applications in optical sciences and engineering. In this comment, we present a brief perspective on the developments in this field and discuss possible future research directions that can benefit from the notion of non-Hermitian engineering.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] A non-Hermitian circular billiard
    Patkar, Saket P.
    Jain, Sudhir R.
    PHYSICS LETTERS A, 2010, 374 (34) : 3396 - 3399
  • [32] Monopoles in non-Hermitian systems
    Zhang, Qi
    Wu, Biao
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (06)
  • [33] Non-Hermitian landscape of autoionization
    Mouloudakis, G.
    Lambropoulos, P.
    PHYSICAL REVIEW A, 2023, 108 (06)
  • [34] Non-Hermitian masking machine
    Metwally, N.
    Eid, A.
    EUROPEAN PHYSICAL JOURNAL D, 2024, 78 (06):
  • [35] NON-HERMITIAN YUKAWA COUPLINGS
    BRANCO, GC
    SILVAMARCOS, JI
    PHYSICS LETTERS B, 1994, 331 (3-4) : 390 - 394
  • [36] Non-hermitian integrable models
    Bogolyubov N.M.
    Journal of Mathematical Sciences, 2001, 104 (3) : 1097 - 1104
  • [37] Non-Hermitian superintegrable systems
    Correa, Francisco
    Inzunza, Luis
    Marquette, Ian
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (34)
  • [38] Non-Hermitian topological magnonics
    Yu, Tao
    Zou, Ji
    Zeng, Bowen
    Rao, J. W.
    Xia, Ke
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2024, 1062 : 1 - 86
  • [39] Non-Hermitian Floquet invisibility
    Longhi, S.
    EPL, 2017, 117 (01)
  • [40] Non-Hermitian localization and delocalization
    Feinberg, J
    Zee, A
    PHYSICAL REVIEW E, 1999, 59 (06): : 6433 - 6443