Shaped Policy Search for Evolutionary Strategies using Waypoints

被引:0
|
作者
Lekkala, Kiran [1 ]
Itti, Laurent [2 ]
机构
[1] Univ Southern Calif, ILab, Dept Comp Sci, Los Angeles, CA 90089 USA
[2] Univ Southern Calif, ILab, Dept Comp Sci Psychol & NGP, Los Angeles, CA 90089 USA
关键词
D O I
10.1109/ICRA48506.2021.9561607
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we try to improve exploration in Blackbox methods, particularly Evolution strategies (ES), when applied to Reinforcement Learning (RI.) problems where intermediate waypoints/subgoals are available. Since Evolutionary strategies are highly parallelizable, instead of extracting just a scalar cumulative reward, we use the state-action pairs from the trajectories obtained during rollouts/evaluations, to learn the dynamics of the agent. The learnt dynamics are then used in the optimization procedure to speed-up training. Lastly, we show how our proposed approach is universally applicable by presenting results from experiments conducted on Carla driving and UR5 robotic arm simulators.
引用
收藏
页码:9093 / 9100
页数:8
相关论文
共 50 条
  • [21] Improving microservices extraction using evolutionary search
    Sellami, Khaled
    Ouni, Ali
    Saied, Mohamed Aymen
    Bouktif, Salah
    Mkaouer, Mohamed Wiem
    INFORMATION AND SOFTWARE TECHNOLOGY, 2022, 151
  • [22] Face Alignment Using Boosting and Evolutionary Search
    Zhang, Hua
    Liu, Duanduan
    Poel, Mannes
    Nijholt, Anton
    COMPUTER VISION - ACCV 2009, PT II, 2010, 5995 : 110 - +
  • [23] Neuro-Evolutionary Direct Policy Search for Multiobjective Optimal Control
    Zaniolo, Marta
    Giuliani, Matteo
    Castelletti, Andrea
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (10) : 5926 - 5938
  • [24] An evolutionary random policy search algorithm for solving Markov decision processes
    Hu, Jiaqiao
    Fu, Michael C.
    Ramezani, Vahid R.
    Marcus, Steven I.
    INFORMS JOURNAL ON COMPUTING, 2007, 19 (02) : 161 - 174
  • [25] The Evolutionary Nature of Breakthrough Innovation: An Empirical Investigation of Firm Search Strategies
    Randle, Dominika Kinga
    Pisano, Gary Paul
    STRATEGY SCIENCE, 2021, 6 (04) : 290 - 304
  • [26] REACTION SEARCH STRATEGIES USING REACCS
    MILLS, JE
    AMERICAN LABORATORY, 1988, 20 (02) : 154 - &
  • [27] Policy search using paired comparisons
    Strens, MJA
    Moore, AW
    JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 921 - 950
  • [28] Are Mating Strategies Shaped by Foraging Strategies? Individual Differences Associated With Search Patterns Through Dating Pools
    Kolze, Katherine E.
    Brase, Gary L.
    Brandner, Jordann L.
    EVOLUTIONARY BEHAVIORAL SCIENCES, 2021, 15 (04) : 340 - 355
  • [29] Structural design using multilevel evolutionary strategies
    Vekeria, HD
    Parmee, IC
    INNOVATION IN COMPUTER METHODS FOR CIVIL AND STRUCTURAL ENGINEERING, 1997, : 121 - 127
  • [30] Analysis of Search Decision Making Using Probabilistic Search Strategies
    Chung, Timothy H.
    Burdick, Joel W.
    IEEE TRANSACTIONS ON ROBOTICS, 2012, 28 (01) : 132 - 144