A new statistical approach to combining p-values using gamma distribution and its application to genome-wide association study

被引:27
|
作者
Chen, Zhongxue [1 ]
Yang, William [2 ]
Liu, Qingzhong [3 ]
Yang, Jack Y. [4 ,5 ,6 ]
Li, Jing [1 ]
Yang, Mary Qu [7 ,8 ,9 ]
机构
[1] Indiana Univ, Sch Publ Hlth, Dept Epidemiol & Biostat, Bloomington, IN 47405 USA
[2] Univ Arkansas, Dept Comp Sci, George W Donaghey Coll Engn & Informat Technol, Little Rock, AR 72204 USA
[3] Sam Houston State Univ, Dept Comp Sci, Huntsville, TX 77341 USA
[4] Indiana Univ Sch Med, Ctr Compuat Biol & Bioinformat, Indianapolis, IN 46202 USA
[5] Massachusetts Gen Hosp, Div Biostat & Biomath, Boston, MA 02114 USA
[6] Harvard Univ, Sch Med, Boston, MA 02114 USA
[7] Univ Arkansas, George W Donaghey Coll Engn & Informat Technol, Dept Informat Sci, MidSouth Bioinformat Ctr, Little Rock, AR 72204 USA
[8] Univ Arkansas, Joint Bioinformat Grad Program, Little Rock, AR 72204 USA
[9] Univ Arkansas Med Sci, Little Rock, AR 72204 USA
来源
BMC BIOINFORMATICS | 2014年 / 15卷
基金
美国国家卫生研究院;
关键词
DIFFERENTIALLY METHYLATED LOCI; WEIGHTED Z-TEST; INDEPENDENT TESTS; MULTIPLE DISEASES; PROBABILITIES; COMBINATION;
D O I
10.1186/1471-2105-15-S17-S3
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Combining information from different studies is an important and useful practice in bioinformatics, including genome-wide association study, rare variant data analysis and other set-based analyses. Many statistical methods have been proposed to combine p-values from independent studies. However, it is known that there is no uniformly most powerful test under all conditions; therefore, finding a powerful test in specific situation is important and desirable. Results: In this paper, we propose a new statistical approach to combining p-values based on gamma distribution, which uses the inverse of the p-value as the shape parameter in the gamma distribution. Conclusions: Simulation study and real data application demonstrate that the proposed method has good performance under some situations.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] New Distance-Based approach for Genome-Wide Association Studies
    Irigoien, Itziar
    Cormand, Bru
    Soler-Artigas, Maria
    Sanchez-Mora, Cristina
    Ramos-Quiroga, Josep-Antoni
    Arenas, Concepcion
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (05) : 2938 - 2949
  • [42] A genome-wide association study of brain lesion distribution in multiple sclerosis
    Gourraud, Pierre-Antoine
    Sdika, Michael
    Khankhanian, Pouya
    Henry, Roland G.
    Beheshtian, Azadeh
    Matthews, Paul M.
    Hauser, Stephen L.
    Oksenberg, Jorge R.
    Pelletier, Daniel
    Baranzini, Sergio E.
    BRAIN, 2013, 136 : 1012 - 1024
  • [43] A statistical reappraisal of the findings of an Esophageal cancer genome-wide association study - Response
    Yang, Howard H.
    Hu, Ying
    Lee, Maxwell P.
    Hu, Nan
    Ng, David
    Goldstein, Alisa M.
    Wang, Chaoyu
    Taylor, Philip R.
    CANCER RESEARCH, 2008, 68 (08) : 3075 - 3075
  • [44] A genome-wide linkage and association study using COGA data
    Zhu, XF
    Cooper, R
    Kan, DH
    Cao, GC
    Wu, XD
    BMC GENETICS, 2005, 6 (Suppl 1)
  • [45] A genome-wide linkage and association study using COGA data
    Xiaofeng Zhu
    Richard Cooper
    Donghui Kan
    Guichan Cao
    Xiaodong Wu
    BMC Genetics, 6
  • [46] Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies
    Bettina Mieth
    Marius Kloft
    Juan Antonio Rodríguez
    Sören Sonnenburg
    Robin Vobruba
    Carlos Morcillo-Suárez
    Xavier Farré
    Urko M. Marigorta
    Ernst Fehr
    Thorsten Dickhaus
    Gilles Blanchard
    Daniel Schunk
    Arcadi Navarro
    Klaus-Robert Müller
    Scientific Reports, 6
  • [47] Gemcitabine pharmacogenomics: Biomarker identification using a genome-wide association approach
    Li, Liang
    Fridley, Brooke
    Kalari, Krishna
    Jenkins, Gregory
    Batzler, Anthony
    Schaid, Daniel
    Wang, Liewei
    CANCER RESEARCH, 2009, 69
  • [48] Combining Multiple Hypothesis Testing with Machine Learning Increases the Statistical Power of Genome-wide Association Studies
    Mieth, Bettina
    Kloft, Marius
    Rodriguez, Juan Antonio
    Sonnenburg, Soren
    Vobruba, Robin
    Morcillo-Suarez, Carlos
    Farre, Xavier
    Marigorta, Urko M.
    Fehr, Ernst
    Dickhaus, Thorsten
    Blanchard, Gilles
    Schunk, Daniel
    Navarro, Arcadi
    Mueller, Klaus-Robert
    SCIENTIFIC REPORTS, 2016, 6
  • [49] Statistical examination of shared loci in neuropsychiatric diseases using genome-wide association study summary statistics
    Spargo, Thomas P.
    Gilchrist, Lachlan
    Hunt, Guy P.
    Dobson, Richard J. B.
    Proitsi, Petroula
    Al-Chalabi, Ammar
    Pain, Oliver
    Iacoangeli, Alfredo
    ELIFE, 2024, 12
  • [50] Hierarchical Association Coefficient Algorithm: New Method for Genome-Wide Association Study
    Kim, Bongsong
    EVOLUTIONARY BIOINFORMATICS, 2017, 13