New upper bounds for the chromatic number of a graph

被引:0
|
作者
Stacho, L [1 ]
机构
[1] Slovak Acad Sci, Inst Math, Dept Informat, Bratislava 84000 4, Slovakia
关键词
simple graph; chromatic number; degree of a vertex;
D O I
10.1002/1097-0118(200102)36:2<117::AID-JGT6>3.0.CO;2-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for any graph G, the chromatic number chi (G) less than or equal to Delta (2)(G) + 1, where Delta (2)(G) is the largest degree that a vertex nu can have subject to the condition that nu is adjacent to a vertex whose degree is at least as big as its own, Moreover, we show that the upper bound is best possible in the the following sense: If Delta (2)(G) greater than or equal to 3, then to determine whether chi (G) less than or equal to Delta (2)(G) is an NP-complete problem. (C) 2001 John Wiley & Sons, Inc.
引用
收藏
页码:117 / 120
页数:4
相关论文
共 50 条
  • [41] Upper bound for DP-chromatic number of a graph
    Lv, Jian-Bo
    Li, Jianxi
    Huang, Ziwen
    DISCRETE APPLIED MATHEMATICS, 2022, 316 : 28 - 32
  • [42] NEW DERIVATIONS OF SPECTRAL BOUNDS FOR CHROMATIC NUMBER
    SCHWENK, AJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (05): : A535 - A535
  • [43] Two smaller upper bounds of list injective chromatic number
    Yuehua Bu
    Kai Lu
    Sheng Yang
    Journal of Combinatorial Optimization, 2015, 29 : 373 - 388
  • [44] Two smaller upper bounds of list injective chromatic number
    Bu, Yuehua
    Lu, Kai
    Yang, Sheng
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2015, 29 (02) : 373 - 388
  • [45] BOUNDS FOR CHROMATIC NUMBER
    WILF, HS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (05): : A618 - &
  • [46] The Bounds on The Locating-Chromatic Number for a Subdivision of a Graph on One Edge
    Purwasih, Ira Apni
    Baskoro, Edy Tri
    Assiyatun, Hilda
    Suprijanto, Djoko
    2ND INTERNATIONAL CONFERENCE OF GRAPH THEORY AND INFORMATION SECURITY, 2015, 74 : 84 - 88
  • [47] The graph tessellation cover number: Chromatic bounds, efficient algorithms and hardness
    Abreu, A.
    Cunha, L.
    de Figueiredo, C.
    Kowada, L.
    Marquezino, F.
    Posner, D.
    Portugal, R.
    THEORETICAL COMPUTER SCIENCE, 2020, 801 : 175 - 191
  • [48] Tight bounds on odd chromatic number of some standard graph products
    Priyamvada
    DISCRETE APPLIED MATHEMATICS, 2025, 369 : 1 - 13
  • [49] Spectral Lower Bounds for the Quantum Chromatic Number of a Graph - Part II
    Wocjan, Pawel
    Elphick, Clive
    Darbari, Parisa
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04):
  • [50] New Upper Bounds on the Energy of a Graph
    Aashtaba, Arman
    Akbarib, Saieed
    Radc, Nader Jafari
    Kamarulhailid, Hailiza
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2023, 90 (03) : 717 - 728