Nonperturbative mean-field theory for minimum enstrophy relaxation

被引:2
|
作者
Hsu, Pei-Chun [1 ,2 ]
Diamond, P. H. [1 ,2 ]
Tobias, S. M. [3 ]
机构
[1] Univ Calif San Diego, CASS, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] Univ Leeds, Dept Appl Math, Leeds LS2 9JT, W Yorkshire, England
来源
PHYSICAL REVIEW E | 2015年 / 91卷 / 05期
关键词
DRIFT-WAVE TURBULENCE; ZONAL FLOWS; TOPOGRAPHY; TRANSPORT; JETS; INSTABILITY; GENERATION; DYNAMICS; STATE;
D O I
10.1103/PhysRevE.91.053024
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dual cascade of enstrophy and energy in quasi-two-dimensional turbulence strongly suggests that a viscous but otherwise potential vorticity (PV) conserving system decays selectively toward a state of minimum potential enstrophy. We derive a nonperturbative mean field theory for the dynamics of minimum enstrophy relaxation by constructing an expression for PV flux during the relaxation process. The theory is used to elucidate the structure of anisotropic flows emerging from the selective decay process. This structural analysis of PV flux is based on the requirements that the mean flux of PV dissipates total potential enstrophy but conserves total fluid kinetic energy. Our results show that the structure of PV flux has the form of a sum of a positive definite hyperviscous and a negative or positive viscous transport of PV. Transport parameters depend on zonal flow and turbulence intensity. Turbulence spreading is shown to be related to PV mixing via the link of turbulence energy flux to PV flux. In the relaxed state, the ratio of the PV gradient to zonal flow velocity is homogenized. This homogenized quantity sets a constraint on the amplitudes of PV and zonal flow in the relaxed state. A characteristic scale is defined by the homogenized quantity and is related to a variant of the Rhines scale. This relaxation model predicts a relaxed state with a structure which is consistent with PV staircases, namely, the proportionality between mean PV gradient and zonal flow strength.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Mean-field theory of social laser
    Alodjants, Alexander P.
    Bazhenov, A. Yu
    Khrennikov, A. Yu
    Bukhanovsky, A., V
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [42] Nonperturbative simulation of anharmonic rattler dynamics in type-I clathrates with vibrational dynamical mean-field theory
    Jasrasaria, Dipti
    Berkelbach, Timothy C.
    PHYSICAL REVIEW B, 2024, 110 (06)
  • [43] Minimum Principle for Indefinite Mean-Field Free Energies
    Gartland, Eugene C., Jr.
    Virga, Epifanio G.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (01) : 143 - 189
  • [44] Minimum Principle for Indefinite Mean-Field Free Energies
    Eugene C. Gartland
    Epifanio G. Virga
    Archive for Rational Mechanics and Analysis, 2010, 196 : 143 - 189
  • [45] MEAN-FIELD THEORY OF NUCLEAR-SPIN RELAXATION IN THE SPIN-GLASS PHASE
    ROSHEN, WA
    PHYSICAL REVIEW B, 1983, 27 (01): : 364 - 369
  • [46] Effective field theory and nuclear mean-field models
    Furnstahl, RJ
    Serot, BD
    NUCLEAR PHYSICS A, 2000, 663 : 513C - 516C
  • [47] Mean-Field Analysis of the Ising Hysteresis Relaxation Time
    Laosiritaworn, Yongyut
    Punya, Atchara
    Ananta, Supon
    Yimnirun, Rattikorn
    CHIANG MAI JOURNAL OF SCIENCE, 2009, 36 (03): : 263 - 275
  • [48] Energy relaxation in the mean-field description of polariton condensates
    Wouters, Michiel
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [49] Exotic Cluster Structures in the Mean-Field Theory
    Maruhn, J. A.
    FISSION AND PROPERTIES OF NEUTRON-RICH NUCLEI, 2018, : 313 - 320
  • [50] Mean-field theory of Boltzmann machine learning
    Tanaka, T
    PHYSICAL REVIEW E, 1998, 58 (02) : 2302 - 2310