Assessing the Implication of Climate Change to Forecast Future Flood Using CMIP6 Climate Projections and HEC-RAS Modeling

被引:9
|
作者
Aryal, Abhiru [1 ]
Acharya, Albira [1 ]
Kalra, Ajay [1 ]
机构
[1] Southern Illinois Univ, Sch Civil Environm & Infrastruct Engn, 1230 Lincoln Dr, Carbondale, IL 62901 USA
来源
FORECASTING | 2022年 / 4卷 / 03期
关键词
CMIP6; bias correction; delta change factor; hydraulic modeling; HEC-RAS; inundation extent; FREQUENCY-ANALYSIS; RIVER; PRECIPITATION; ERA;
D O I
10.3390/forecast4030032
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Climate change has caused uncertainty in the hydrological pattern including weather change, precipitation fluctuations, and extreme temperature, thus triggering unforeseen natural tragedies such as hurricanes, flash flooding, heatwave and more. Because of these unanticipated events occurring all around the globe, the study of the influence of climate change on the alteration of flooding patterns has gained a lot of attention. This research study intends to provide an insight into how the future projected streamflow will affect the flooding-inundation extent by comparing the change in floodplain using both historical and future simulated scenarios. For the future projected data, the climate model Atmosphere/Ocean General Circulation Model (AOGCM) developed by Coupled Model Intercomparison Project Phase 6 (CMIP6) is used, which illustrates that the flood is increasing in considering climate models. Furthermore, a comparison of the existing flood inundation map by the Federal Emergency Management Agency (FEMA) study with the map generated by future projected streamflow data presents the entire inundation area in flood maps, implying the expansion area compared to FEMA needs to be considered in making emergency response plans. The effect of flooding in the inundation area from historical to future flow values, presented mathematically by a calculation of inundation extent percentage, infers that the considered watershed of Rock River is a flood-prone area. The goal is to provide insights on the importance of using the forecasted data for flood analysis and to offer the necessary background needed to strategize an emergency response plan for flood management.
引用
收藏
页码:582 / 603
页数:22
相关论文
共 50 条
  • [21] Bioclimatic change as a function of global warming from CMIP6 climate projections
    Sparey, Morgan
    Cox, Peter
    Williamson, Mark S.
    BIOGEOSCIENCES, 2023, 20 (02) : 451 - 488
  • [22] Climatic zoning of yerba mate and climate change projections: a CMIP6 approach
    Guilherme Botega Torsoni
    Lucas Eduardo de Oliveira Aparecido
    Pedro Antonio Lorençone
    João Antonio Lorençone
    Rafael Fausto de Lima
    Glauco de Souza Rolim
    International Journal of Biometeorology, 2024, 68 : 979 - 990
  • [23] Drought characteristics projections based on CMIP6 climate change scenarios in Syria
    Mathbout, Shifa
    Martin-Vide, Javier
    Bustins, Joan Albert Lopez
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2023, 50
  • [24] Climate change impact on major crop yield and water footprint under CMIP6 climate projections in repeated drought and flood areas in Thailand
    Arunrat, Noppol
    Sereenonchai, Sukanya
    Chaowiwat, Winai
    Wang, Can
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 807
  • [25] Evaluating Future Flood Scenarios Using CMIP5 Climate Projections
    Nyaupane, Narayan
    Thakur, Balbhadra
    Kalra, Ajay
    Ahmad, Sajjad
    WATER, 2018, 10 (12):
  • [26] Significant contribution of bias correction methods to uncertainty in future runoff projections under CMIP6 climate change
    Chae, Seung Taek
    Chung, Eun-Sung
    JOURNAL OF HYDROLOGY-REGIONAL STUDIES, 2024, 56
  • [27] Meteorological flash droughts risk projections based on CMIP6 climate change scenarios
    Sreeparvathy, Vijay
    Srinivas, V. V.
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2022, 5 (01)
  • [28] Climate change projections in Guatemala: temperature and precipitation changes according to CMIP6 models
    Paris Rivera
    Modeling Earth Systems and Environment, 2024, 10 : 2031 - 2049
  • [29] Meteorological flash droughts risk projections based on CMIP6 climate change scenarios
    Vijay Sreeparvathy
    V. V. Srinivas
    npj Climate and Atmospheric Science, 5
  • [30] Climate change projections in Guatemala: temperature and precipitation changes according to CMIP6 models
    Rivera, Paris
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2024, 10 (02) : 2031 - 2049