Fluid-Structure Interaction Modeling of Spacecraft Parachutes for Simulation-Based Design

被引:36
|
作者
Takizawa, Kenji [1 ,2 ]
Spielman, Timothy [3 ]
Moorman, Creighton [3 ]
Tezduyar, Tayfun E. [3 ]
机构
[1] Waseda Univ, Dept Modern Mech Engn, Shinjuku Ku, Tokyo 1698050, Japan
[2] Waseda Univ, Waseda Inst Adv Study, Shinjuku Ku, Tokyo 1698050, Japan
[3] Rice Univ, Houston, TX 77005 USA
关键词
fluid-structure interaction; simulation-based design; parametric studies; spacecraft parachutes; ringsail parachute; space-time technique; geometric porosity; FINITE-ELEMENT COMPUTATION; INCOMPRESSIBLE-FLOW COMPUTATIONS; NAVIER-STOKES EQUATIONS; WIND TURBINE ROTORS; MOVING BOUNDARIES; NUMERICAL-SIMULATION; CEREBRAL ANEURYSMS; TIME PROCEDURE; 3D SIMULATION; MESH UPDATE;
D O I
10.1115/1.4005070
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Even though computer modeling of spacecraft parachutes involves a number of numerical challenges, advanced techniques developed in recent years for fluid-structure interaction (FSI) modeling in general and for parachute FSI modeling specifically have made simulation-based design studies possible. In this paper we focus on such studies for a single main parachute to be used with the Orion spacecraft. Although these large parachutes are typically used in clusters of two or three parachutes, studies for a single parachute can still provide valuable information for performance analysis and design and can be rather extensive. The major challenges in computer modeling of a single spacecraft parachute are the FSI between the air and the parachute canopy and the geometric complexities created by the construction of the parachute from "rings" and "sails" with hundreds of gaps and slits. The Team for Advanced Flow Simulation and Modeling has successfully addressed the computational challenges related to the FSI and geometric complexities, and has also been devising special procedures as needed for specific design parameter studies. In this paper we present parametric studies based on the suspension line length, canopy loading, and the length of the overinflation control line. [DOI: 10.1115/1.4005070]
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Fluid-structure interaction modeling of lactating breast
    Azarnoosh, Jamasp
    Hassanipour, Fatemeh
    JOURNAL OF BIOMECHANICS, 2020, 103 (103)
  • [32] NUMERICAL SIMULATION OF RADOME WITH FLUID-STRUCTURE INTERACTION
    Kun-Mei, Xu
    Yong, Hu
    Ye, Tang
    ENGINEERING PLASTICITY AND ITS APPLICATIONS, 2010, : 66 - 70
  • [33] A three dimensional simulation of fluid-structure interaction
    Liu, Kunlun
    Barocas, Victor H.
    PROCEEDING OF THE ASME SUMMER BIOENGINEERING CONFERENCE - 2007, 2007, : 525 - 526
  • [34] Fluid-structure interaction modeling of parachute clusters
    Takizawa, Kenji
    Wright, Samuel
    Moorman, Creighton
    Tezduyar, Tayfun E.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (1-3) : 286 - 307
  • [35] Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulation
    Hsu, Ming-Chen
    Bazilevs, Yuri
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2011, 47 (06) : 593 - 599
  • [36] UNIFIED CONTINUUM MODELING OF FLUID-STRUCTURE INTERACTION
    Hoffman, Johan
    Jansson, Johan
    Stockli, Michael
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (03): : 491 - 513
  • [37] Immersogeometric fluid-structure interaction modeling and simulation of transcatheter aortic valve replacement
    Wu, Michael C. H.
    Muchowski, Heather M.
    Johnson, Emily L.
    Rajanna, Manoj R.
    Hsu, Ming-Chen
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 357
  • [38] Fluid-Structure Interaction Modeling by ALE and SPH
    Guo Baodong
    Qu Qiulin
    Wu Jiali
    Liu Peiqing
    APPLIED MECHANICS AND MATERIALS I, PTS 1-3, 2013, 275-277 : 393 - 397
  • [39] Optimizing Tunnel Design in Sharp Curves: A Numerical Simulation of Fluid-Structure Interaction
    Cheng, Xiaolong
    Zhang, Xujin
    Su, Linpeng
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2024, 42 (01) : 277 - 286
  • [40] A component-based parallel infrastructure for the simulation of fluid-structure interaction
    Parker, Steven G.
    Guilkey, James
    Harman, Todd
    ENGINEERING WITH COMPUTERS, 2006, 22 (3-4) : 277 - 292