Nonlinear elasticity of semiflexible filament networks

被引:39
|
作者
Meng, Fanlong [1 ]
Terentjev, Eugene M. [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
基金
英国工程与自然科学研究理事会;
关键词
CONCENTRATED ISOTROPIC SOLUTIONS; NEGATIVE NORMAL STRESS; CELL; MODELS; VISCOELASTICITY; MECHANICS; EVOLUTION; POLYMERS; STRENGTH; BEHAVIOR;
D O I
10.1039/c6sm01029f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develop a continuum theory for equilibrium elasticity of a network of crosslinked semiflexible filaments, spanning the full range between flexible entropy-driven chains to stiff athermal rods. We choose the 3-chain constitutive model of network elasticity over several plausible candidates, and derive analytical expressions for the elastic energy at arbitrary strain, with the corresponding stress-strain relationship. The theory fits well to a wide range of experimental data on simple shear in different filament networks, quantitatively matching the differential shear modulus variation with stress, with only two adjustable parameters (which represent the filament stiffness and the pre-tension in the network, respectively). The general theory accurately describes the crossover between the positive and negative Poynting effect (normal stress on imposed shear) on increasing the stiffness of filaments forming the network. We discuss the network stability (the point of marginal rigidity) and the phenomenon of tensegrity, showing that filament pre-tension on crosslinking into the network determines the magnitude of linear modulus G(0).
引用
收藏
页码:6749 / 6756
页数:8
相关论文
共 50 条
  • [41] Universality in Nonlinear Elasticity of Biological and Polymeric Networks and Gels
    Dobrynin, Andrey V.
    Carrillo, Jan-Michael Y.
    MACROMOLECULES, 2011, 44 (01) : 140 - 146
  • [42] On limit equations of nonlinear elasticity theory on thin networks
    V. V. Zhikov
    S. E. Pastukhova
    Doklady Mathematics, 2006, 73 : 424 - 429
  • [43] Elasticity of Semiflexible ZigZag Nanosprings with a Point Magnetic Moment
    Razbin, Mohammadhosein
    Benetatos, Panayotis
    POLYMERS, 2023, 15 (01)
  • [44] Elasticity of semiflexible polymers with and without self-interactions
    Rosa, A
    Hoang, TX
    Marenduzzo, D
    Maritan, A
    MACROMOLECULES, 2003, 36 (26) : 10095 - 10102
  • [45] Stretching Semiflexible Filaments and Their Networks
    Blundell, J. R.
    Terentjev, E. M.
    MACROMOLECULES, 2009, 42 (14) : 5388 - 5394
  • [46] Modeling semiflexible polymer networks
    Broedersz, C. P.
    MacKintosh, F. C.
    REVIEWS OF MODERN PHYSICS, 2014, 86 (03) : 995 - 1036
  • [47] Rods-on-string idealization captures semiflexible filament dynamics
    Chandran, Preethi L.
    Mofrad, Mohammad R. K.
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [48] Braiding Dynamics in Semiflexible Filament Bundles under Oscillatory Forcing
    Slepukhin, Valentin M.
    Levine, Alex J.
    POLYMERS, 2021, 13 (13)
  • [49] Theory of Semiflexible Filaments and Networks
    Meng, Fanlong
    Terentjev, Eugene M.
    POLYMERS, 2017, 9 (02)
  • [50] The deformation field in semiflexible networks
    Levine, AJ
    Head, DA
    MacKintosh, FC
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (22) : S2079 - S2088