Evaluation of RGB and LiDAR Combination for Robust Place Recognition

被引:0
|
作者
Alijani, Farid [1 ]
Peltomaki, Jukka [1 ]
Puura, Jussi [2 ]
Huttunen, Heikki [3 ]
Kamarainen, Joni-Kristian [1 ]
Rahtu, Esa [1 ]
机构
[1] Tampere Univ, Tampere, Finland
[2] Sandvik Min & Construct Ltd, Tampere, Finland
[3] Visy Oy, Tampere, Finland
关键词
Visual Place Recognition; Image Retrieval; Deep Convolutional Neural Network; Deep Learning for Visual Understanding; LOCALIZATION; FEATURES;
D O I
10.5220/0010909100003124
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Place recognition is one of the main challenges in localization, mapping and navigation tasks of self-driving vehicles under various perceptual conditions, including appearance and viewpoint variations. In this paper, we provide a comprehensive study on the utility of fine-tuned Deep Convolutional Neural Network (DCNN) with three MAC, SpoC and GeM pooling layers to learn global image representation for place recognition in an end-to-end manner using three different sensor data modalities: (1) only RGB images; (2) only intensity or only depth 3D LiDAR point clouds projected into 2D images and (3) early fusion of RGB images and LiDAR point clouds (both intensity and depth) to form a unified global descriptor to leverage robust features of both modalities. The experimental results on a diverse and large long-term Oxford Radar RobotCar dataset illustrate an achievement of 5 m outdoor place recognition accuracy with high recall rate of 90 using early fusion of RGB and LiDAR sensor data modalities when fine-tuned network with GeM pooling layer is utilized.
引用
收藏
页码:650 / 658
页数:9
相关论文
共 50 条
  • [31] Entropy-based Features for Robust Place Recognition
    Rady, Sherine
    Wagner, Achim
    Badreddin, Essam
    2008 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), VOLS 1-6, 2008, : 713 - 718
  • [32] Robust Visual Place Recognition for Severe Appearance Changes
    Jiang, Haiyang
    Piao, Songhao
    Yu, Huai
    Li, Wei
    Yu, Lei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (05) : 4289 - 4296
  • [33] Robust Visual Place Recognition Based on Context Information
    Dai, Deyun
    Chen, Zonghai
    Wang, Jikai
    Bao, Peng
    Zhao, Hao
    IFAC PAPERSONLINE, 2019, 52 (22): : 49 - 54
  • [34] Acoustic feature combination for robust speech recognition
    Zolnay, A
    Schlüter, R
    Ney, H
    2005 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1-5: SPEECH PROCESSING, 2005, : 457 - 460
  • [35] MinkLoc plus plus : Lidar and Monocular Image Fusion for Place Recognition
    Komorowski, Jacek
    Wysoczanska, Monika
    Trzcinski, Tomasz
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [36] SC-LPR: Spatiotemporal context based LiDAR place recognition
    Dai, Deyun
    Wang, Jikai
    Chen, Zonghai
    Bao, Peng
    Pattern Recognition Letters, 2022, 156 : 160 - 166
  • [37] LiDAR-Based Semantic Place Recognition in Dynamic Urban Environments
    Wei, Kun
    Ni, Peizhou
    Li, Xu
    Hu, Yue
    Hu, Weiming
    IEEE SENSORS JOURNAL, 2024, 24 (17) : 28397 - 28408
  • [38] Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition
    Yin, Peng
    Xu, Lingyun
    Liu, Zhe
    Li, Lu
    Salman, Hadi
    He, Yuqing
    Xu, Weiliang
    Wang, Hesheng
    Choset, Howie
    2018 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2018, : 1162 - 1167
  • [39] Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning
    Yin, Huan
    Xu, Xuecheng
    Wang, Yue
    Xiong, Rong
    FRONTIERS IN ROBOTICS AND AI, 2021, 8
  • [40] SC-LPR: Spatiotemporal context based LiDAR place recognition
    Dai, Deyun
    Wang, Jikai
    Chen, Zonghai
    Bao, Peng
    PATTERN RECOGNITION LETTERS, 2022, 156 : 160 - 166