Resource-Efficient Dissipative Entanglement of Two Trapped-Ion Qubits

被引:19
|
作者
Cole, Daniel C. [1 ,6 ]
Erickson, Stephen D. [1 ,2 ]
Zarantonello, Giorgio [1 ,2 ]
Horn, Karl P. [3 ]
Hou, Pan-Yu [1 ,2 ]
Wu, Jenny J. [1 ,2 ]
Slichter, Daniel H. [1 ]
Reiter, Florentin [4 ]
Koch, Christiane P. [3 ,5 ]
Leibfried, Dietrich [1 ]
机构
[1] Natl Inst Stand & Technol, 325 Broadway, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
[3] Univ Kassel, Theoret Phys, Heinrich Plett Str 40, D-34132 Kassel, Germany
[4] Swiss Fed Inst Technol, Inst Quantum Elect, Otto Stern Weg 1, CH-8093 Zurich, Switzerland
[5] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst & Fachbereich Phy, Amimallee 14, D-14195 Berlin, Germany
[6] ColdQuanta Inc, 3030 Sterling Circle, Boulder, CO 80301 USA
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
STEADY-STATE; QUANTUM; DECOHERENCE; DYNAMICS; MEMORY;
D O I
10.1103/PhysRevLett.128.080502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We demonstrate a simplified method for dissipative generation of an entangled state of two trapped-ion qubits. Our implementation produces its target state faster and with higher fidelity than previous demonstrations of dissipative entanglement generation and eliminates the need for auxiliary ions. The entangled singlet state is generated in similar to 7 ms with a fidelity of 0.949(4). The dominant source of infidelity is photon scattering. We discuss this error source and strategies for its mitigation.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Coherent Control of Trapped-Ion Qubits with Localized Electric Fields
    Srinivas, R.
    Loschnauer, C. M.
    Malinowski, M.
    Hughes, A. C.
    Nourshargh, R.
    Negnevitsky, V
    Allcock, D. T. C.
    King, S. A.
    Matthiesen, C.
    Harty, T. P.
    Ballance, C. J.
    PHYSICAL REVIEW LETTERS, 2023, 131 (02)
  • [33] THEORY OF DISSIPATIVE TRAPPED-ION CONVECTIVE-CELL TURBULENCE
    DIAMOND, PH
    BIGLARI, H
    PHYSICAL REVIEW LETTERS, 1990, 65 (23) : 2865 - 2868
  • [34] EFFECT OF TOROIDAL GRADIENT DRIFTS ON DISSIPATIVE TRAPPED-ION INSTABILITY
    TANG, WM
    PHYSICS OF FLUIDS, 1974, 17 (06) : 1249 - 1257
  • [35] Susceptibility of trapped-ion qubits to low-dose radiation sources
    Cui, Jiafeng
    Rasmusson, A. J.
    D'Onofrio, Marissa
    Xie, Yuanheng
    Wolanski, Evangeline
    Richerme, Philip
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2021, 54 (13)
  • [36] Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits
    Ballance, C. J.
    Harty, T. P.
    Linke, N. M.
    Sepiol, M. A.
    Lucas, D. M.
    PHYSICAL REVIEW LETTERS, 2016, 117 (06)
  • [37] Polarization-insensitive state preparation for trapped-ion hyperfine qubits
    Leu, A.D.
    Smith, M.C.
    Gely, M.F.
    Lucas, D.M.
    Physical Review A, 110 (04):
  • [38] Progress of quantum entanglement in a trapped-ion based quantum computer
    Yum, Dahyun
    Choi, Taeyoung
    CURRENT APPLIED PHYSICS, 2022, 41 : 163 - 177
  • [39] Polarization-insensitive state preparation for trapped-ion hyperfine qubits
    Leu, A. D.
    Smith, M. C.
    Gely, M. F.
    Lucas, D. M.
    PHYSICAL REVIEW A, 2024, 110 (04)
  • [40] Quantum gate teleportation between separated qubits in a trapped-ion processor
    Wan, Yong
    Kienzler, Daniel
    Erickson, Stephen D.
    Mayer, Karl H.
    Tan, Ting Rei
    Wu, Jenny J.
    Vasconcelos, Hilma M.
    Glancy, Scott
    Knill, Emanuel
    Wineland, David J.
    Wilson, Andrew C.
    Leibfried, Dietrich
    SCIENCE, 2019, 364 (6443) : 875 - +