Polarization mode dispersion probability distribution for arbitrary distances

被引:11
|
作者
Yang, JK [1 ]
Kath, WL
Menyuk, CR
机构
[1] Univ Vermont, Dept Math & Stat, Burlington, VT 05401 USA
[2] Northwestern Univ, Robert R McCormick Sch Engn & Appl Sci, Evanston, IL 60208 USA
[3] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Catonsville, MD 21228 USA
[4] USA, Res Lab, Telecommun Res Lab, Adelphi, MD 20755 USA
关键词
D O I
10.1364/OL.26.001472
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The probability distribution of the differential group delay (DGD) at any fiber length is determined by use of a physically reasonable model of the fiber birefringence. We show that if the fiber correlation length is of the same order as or larger than the beat length, the DGD distribution approaches a Maxwellian in roughly 30 fiber correlation lengths, corresponding to a couple of kilometers in realistic cases. We also find that the probability distribution function of the polarization dispersion vector at the output of the fiber depends on the angle between it and the local birefringence vector on the Poincare sphere, showing that the DGD remains correlated with the orientation of the local birefringence axes over arbitrarily long distances. (C) 2001 Optical Society of America.
引用
收藏
页码:1472 / 1474
页数:3
相关论文
共 50 条
  • [21] Mapping the polarization distribution of arbitrary vector polarization beam
    Wang, Xiao
    Yang, Feng
    Yin, Jianhua
    OPTIK, 2017, 144 : 124 - 131
  • [22] Reducing polarization mode dispersion with controlled polarization rotations
    Massar, S.
    Popescu, S.
    NEW JOURNAL OF PHYSICS, 2007, 9
  • [23] Effect on polarization mode dispersion due to eccentricity of refractive index distribution in a single-mode fiber
    Dong, Hui
    Wu, Chongqing
    Guangxue Xuebao/Acta Optica Sinica, 2002, 22 (11): : 1312 - 1317
  • [24] Periodic compensation of polarization mode dispersion
    Chertkov, M
    Gabitov, I
    Kolokolov, I
    Schäfer, T
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2004, 21 (03) : 486 - 498
  • [25] Challenges to polarization mode dispersion compensation
    Khosravani, R
    ACTIVE AND PASSIVE OPTICAL COMPONENTS FOR WDM COMMUNICATIONS II, 2002, 4870 : 214 - 223
  • [26] Polarization mode dispersion in WDM systems
    X. Liu
    B. Yang
    X Zhang
    Optical and Quantum Electronics, 2002, 34 : 677 - 685
  • [27] MEASUREMENT OF POLARIZATION-MODE DISPERSION
    HEFFNER, BL
    HERNDAY, PR
    HEWLETT-PACKARD JOURNAL, 1995, 46 (01): : 27 - 33
  • [28] Statistics of the polarization mode dispersion dynamics
    Mecozzi, Antonio
    Antonelli, Cristian
    Brodsky, Misha
    OPTICS LETTERS, 2007, 32 (20) : 3032 - 3034
  • [29] Jones matrix of polarization mode dispersion
    Penninckx, D
    Morénas, V
    OPTICS LETTERS, 1999, 24 (13) : 875 - 877
  • [30] Polarization mode dispersion compensation systems
    Liu, Xiu-Min
    Li, Chao-Yang
    Li, Rong-Hua
    Yang, Bo-Jun
    Zhang, Xiao-Guang
    Bandaoti Guangdian/Semiconductor Optoelectronics, 2001, 22 (06):