On large-scale diagonalization techniques for the Anderson model of localization

被引:105
|
作者
Schenk, Olaf [1 ]
Bollhoefer, Matthias [2 ]
Roemer, Rudolf A. [3 ,4 ]
机构
[1] Univ Basel, Dept Comp Sci, CH-4056 Basel, Switzerland
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Computat Math, D-38106 Braunschweig, Germany
[3] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[4] Univ Warwick, Ctr Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Anderson model of localization; large-scale eigenvalue problem; Lanczos algorithm; Jacobi-Davidson algorithm; Cullum-Willoughby implementation; symmetric indefinite matrix; multilevel preconditioning; maximum weighted matching;
D O I
10.1137/070707002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenvalues and their associated eigenvectors for large-scale sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-invert techniques ill the implicitly restarted Lanczos method and in the Jacobi-Davidson method. Our preconditioning approaches for the shift-and-invert symmetric indefinite linear system are based on maximum weighted matchings and algebraic multilevel incomplete LDLT factorizations. These techniques can be seen as a complement to the alternative idea of using more complete pivoting techniques for the highly ill-conditioned symmetric indefinite Anderson matrices. We demonstrate the effectiveness and the numerical accuracy of these algorithms. Our numerical examples reveal that recent algebraic multilevel preconditioning solvers can accelerate the computation of a large-scale eigenvalue problem corresponding to the Anderson model of localization by several orders of magnitude.
引用
收藏
页码:91 / 112
页数:22
相关论文
共 50 条
  • [41] DIAGONALIZATION STUDY OF THE 2-IMPURITY ANDERSON MODEL
    YANAGISAWA, T
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1991, 60 (10) : 3449 - 3459
  • [42] Source localization in large-scale asynchronous sensor networks
    Ma, Fuhe
    Liu, Zhang-Meng
    Yang, Le
    Guo, Fucheng
    DIGITAL SIGNAL PROCESSING, 2021, 109
  • [43] Efficient Large-scale Localization by Global Instance Recognition
    Xue, Fei
    Budvytis, Ignas
    Reino, Daniel Olmeda
    Cipolla, Roberto
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 17327 - 17336
  • [44] Orca: Differential Bug Localization in Large-Scale Services
    Bhagwan, Ranjita
    Kumar, Rahul
    Maddila, Chandra Sekhar
    Philip, Adithya Abraham
    PROCEEDINGS OF THE 13TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, 2018, : 493 - 509
  • [45] Efficient localization for large-scale underwater sensor networks
    Zhou, Zhong
    Cui, Jun-Hong
    Zhou, Shengli
    AD HOC NETWORKS, 2010, 8 (03) : 267 - 279
  • [46] Remarks on large-scale matrix diagonalization using a Lagrange–Newton–Raphson minimization in a subspace
    Josep Maria Anglada
    Emili Besalú
    Josep Maria Bofill
    Theoretical Chemistry Accounts, 1999, 103 : 163 - 166
  • [47] Large-scale Knowledge Transfer for Object Localization in ImageNet
    Guillaumin, Matthieu
    Ferrari, Vittorio
    2012 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2012, : 3202 - 3209
  • [48] Adaptive Indoor Localization System for Large-Scale Area
    Vongsuteera, Teerapat
    Rojviboonchai, Kultida
    IEEE ACCESS, 2021, 9 : 8847 - 8865
  • [49] Large-scale Localization Datasets in Crowded Indoor Spaces
    Lee, Donghwan
    Ryu, Soohyun
    Yeon, Suyong
    Lee, Yonghan
    Kim, Deokhwa
    Han, Cheolho
    Cabon, Yohann
    Weinzaepfel, Philippe
    Guerin, Nicolas
    Csurka, Gabriela
    Humenberger, Martin
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 3226 - 3235
  • [50] Bag of World Anchors for Instant Large-Scale Localization
    Reyes-Aviles, Fernando
    Fleck, Philipp
    Schmalstieg, Dieter
    Arth, Clemens
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2023, 29 (11) : 4730 - 4739