On large-scale diagonalization techniques for the Anderson model of localization

被引:105
|
作者
Schenk, Olaf [1 ]
Bollhoefer, Matthias [2 ]
Roemer, Rudolf A. [3 ,4 ]
机构
[1] Univ Basel, Dept Comp Sci, CH-4056 Basel, Switzerland
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Computat Math, D-38106 Braunschweig, Germany
[3] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[4] Univ Warwick, Ctr Comp Sci, Coventry CV4 7AL, W Midlands, England
基金
英国工程与自然科学研究理事会;
关键词
Anderson model of localization; large-scale eigenvalue problem; Lanczos algorithm; Jacobi-Davidson algorithm; Cullum-Willoughby implementation; symmetric indefinite matrix; multilevel preconditioning; maximum weighted matching;
D O I
10.1137/070707002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose efficient preconditioning algorithms for an eigenvalue problem arising in quantum physics, namely, the computation of a few interior eigenvalues and their associated eigenvectors for large-scale sparse real and symmetric indefinite matrices of the Anderson model of localization. We compare the Lanczos algorithm in the 1987 implementation by Cullum and Willoughby with the shift-and-invert techniques ill the implicitly restarted Lanczos method and in the Jacobi-Davidson method. Our preconditioning approaches for the shift-and-invert symmetric indefinite linear system are based on maximum weighted matchings and algebraic multilevel incomplete LDLT factorizations. These techniques can be seen as a complement to the alternative idea of using more complete pivoting techniques for the highly ill-conditioned symmetric indefinite Anderson matrices. We demonstrate the effectiveness and the numerical accuracy of these algorithms. Our numerical examples reveal that recent algebraic multilevel preconditioning solvers can accelerate the computation of a large-scale eigenvalue problem corresponding to the Anderson model of localization by several orders of magnitude.
引用
收藏
页码:91 / 112
页数:22
相关论文
共 50 条
  • [1] On large-scale diagonalization techniques for the Anderson model of localization
    Schenk, Olaf
    Bollhofer, Matthias
    Romer, Rudolf A.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (03): : 963 - 983
  • [2] Approximate diagonalization method for large-scale Hamiltonians
    Amin, Mohammad H.
    Smirnov, Anatoly Yu.
    Dickson, Neil G.
    Drew-Brook, Marshall
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [3] FILTER DIAGONALIZATION: A NEW METHOD FOR LARGE-SCALE SHELL-MODEL CALCULATIONS
    Mizusaki, Takahiro
    Kaneko, Kazunari
    Honma, Michio
    Sakurai, Tetsuya
    ACTA PHYSICA POLONICA B, 2011, 42 (3-4): : 447 - 450
  • [4] DIAGONALIZATION OF THE GENERALIZED ANDERSON MODEL
    COLEMAN, P
    ANDREI, N
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1986, 19 (17): : 3211 - 3233
  • [5] LARGE-SCALE RANDOMIZATION TECHNIQUES
    WAGNER, NR
    PUTTER, PS
    CAIN, MR
    LECTURE NOTES IN COMPUTER SCIENCE, 1987, 263 : 393 - 404
  • [6] Large-scale geometry obstructs localization
    Ludewig, Matthias
    Thiang, Guo Chuan
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (09)
  • [7] Large-scale concurrent mapping and localization
    Leonard, JJ
    SENSOR FUSION AND DECENTRALIZED CONTROL IN ROBOTIC SYSTEMS III, 2000, 4196 : 370 - 376
  • [8] Anomaly Localization in Large-Scale Clusters
    Zheng, Ziming
    Li, Yawei
    Lan, Zhiling
    2007 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING, 2007, : 322 - 330
  • [9] FACTORS LIMITING LARGE-SCALE LOCALIZATION
    STERKEN, Y
    TOET, A
    YAP, YL
    PERCEPTION, 1994, 23 (06) : 709 - 726
  • [10] Model-based fault localization in large-scale computing systems
    Maruyama, Naoya
    Matsuoka, Satoshi
    2008 IEEE INTERNATIONAL SYMPOSIUM ON PARALLEL & DISTRIBUTED PROCESSING, VOLS 1-8, 2008, : 1841 - 1852