GemSpot: A Pipeline for Robust Modeling of Ligands into Cryo-EM Maps

被引:41
|
作者
Robertson, Michael J. [1 ]
van Zundert, Gydo C. P. [3 ]
Borrelli, Kenneth [3 ]
Skiniotis, Georgios [1 ,2 ]
机构
[1] Stanford Univ, Dept Mol & Cellular Physiol, Sch Med, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Struct Biol, Sch Med, Stanford, CA 94305 USA
[3] Schrodinger, New York, NY 10036 USA
关键词
PROTEIN; DOCKING; MOLECULES; DISCOVERY;
D O I
10.1016/j.str.2020.04.018
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Producing an accurate atomic model of biomolecule-ligand interactions from maps generated by cryoelectron microscopy (cryo-EM) often presents challenges inherent to the methodology and the dynamic nature of ligand binding, Here, we present GemSpot, an automated pipeline of computational chemistry methods that take into account EM map potentials, quantum mechanics energy calculations, and water molecule site prediction to generate candidate poses and provide a measure of the degree of confidence. The pipeline is validated through several published cryo-EM structures of complexes in different resolution ranges and various types of ligands. In all cases, at least one identified pose produced both excellent interactions with the target and agreement with the map. GemSpot will be valuable for the robust identification of ligand poses and drug discovery efforts through cryo-EM.
引用
收藏
页码:707 / +
页数:13
相关论文
共 50 条
  • [21] A fragment based method for modeling of protein segments into cryo-EM density maps
    Jochen Ismer
    Alexander S. Rose
    Johanna K. S. Tiemann
    Peter W. Hildebrand
    BMC Bioinformatics, 18
  • [22] Enhancement of Cryo-EM maps by a multiscale tubular filter
    Vargas, Javier
    Gomez-Pedrero, Jose A.
    Antonio Quiroga, J.
    Alonso, Jose
    OPTICS EXPRESS, 2022, 30 (03) : 4515 - 4527
  • [23] ANALYSES OF SUBNANOMETER RESOLUTION CRYO-EM DENSITY MAPS
    Baker, Matthew L.
    Baker, Mariah R.
    Hryc, Corey F.
    DiMaio, Frank
    METHODS IN ENZYMOLOGY, VOL 483: CRYO-EM, PART C: ANALYSES, INTERPRETATION, AND CASE STUDIES, 2010, 483 : 1 - 29
  • [24] Cryo-EM
    Nogales, Eva
    CURRENT BIOLOGY, 2018, 28 (19) : R1127 - R1128
  • [25] Quantifying the local resolution of cryo-EM density maps
    Kucukelbir A.
    Sigworth F.J.
    Tagare H.D.
    Nature Methods, 2014, 11 (1) : 63 - 65
  • [26] Quality vs. Resolution in Cryo-EM Maps
    Stagg, Scott M.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2019, 75 : A412 - A412
  • [27] Automated Threshold Selection for Cryo-EM Density Maps
    Pfab, Jonas
    Si, Dong
    ACM-BCB'19: PROCEEDINGS OF THE 10TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, 2019, : 161 - 166
  • [28] Refinement of Atomic Structures Against cryo-EM Maps
    Murshudov, G. N.
    RESOLUTION REVOLUTION: RECENT ADVANCES IN CRYOEM, 2016, 579 : 277 - 305
  • [29] Interpretation of RNA cryo-EM maps of various resolutions
    Kretsch, Rachael
    Das, Rhiju
    Chiu, Wah
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : A217 - A217