Reinforcement Learning based Negotiation-aware Motion Planning of Autonomous Vehicles

被引:6
|
作者
Wang, Zhitao [1 ]
Zhuang, Yuzheng [1 ]
Gu, Qiang [1 ]
Chen, Dong [1 ]
Zhang, Hongbo [1 ]
Liu, Wulong [1 ]
机构
[1] Huawei Technol, Noahs Ark Lab, Beijing, Peoples R China
关键词
GAME;
D O I
10.1109/IROS51168.2021.9635935
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For autonomous vehicles integrating onto road-ways with human traffic participants, it requires understanding and adapting to the participants' intention by responding in predictable ways. This paper proposes a reinforcement learning based negotiation-aware motion planning framework, which adopts RL to adjust the driving style of the planner by dynamically modifying the prediction horizon length of the motion planner in real time adaptively. The framework models the interaction between the autonomous vehicle and other traffic participants as a Markov Decision Process. A temporal sequence of occupancy grid maps are taken as inputs for RL module to embed an implicit intention reasoning. Curriculum learning is employed to enhance the training efficiency and the robustness of the algorithm. We applied our method to narrow lane navigation in both simulation and real world to demonstrate that the proposed method outperforms the common alternative due to its advantage in alleviating the social dilemma problem with proper negotiation skills.
引用
收藏
页码:4532 / 4537
页数:6
相关论文
共 50 条
  • [1] Optimal motion planning by reinforcement learning in autonomous mobile vehicles
    Gomez, M.
    Gonzalez, R. V.
    Martinez-Marin, T.
    Meziat, D.
    Sanchez, S.
    ROBOTICA, 2012, 30 : 159 - 170
  • [2] Survey of Deep Reinforcement Learning for Motion Planning of Autonomous Vehicles
    Aradi, Szilard
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (02) : 740 - 759
  • [3] Safe Reinforcement Learning With Stability Guarantee for Motion Planning of Autonomous Vehicles
    Zhang, Lixian
    Zhang, Ruixian
    Wu, Tong
    Weng, Rui
    Han, Minghao
    Zhao, Ye
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (12) : 5435 - 5444
  • [4] Motion Planning for Autonomous Vehicles in the Presence of Uncertainty Using Reinforcement Learning
    Rezaee, Kasra
    Yadmellat, Peyman
    Chamorro, Simon
    2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 3506 - 3511
  • [5] Hierarchical Reinforcement Learning for Autonomous Decision Making and Motion Planning of Intelligent Vehicles
    Lu, Yang
    Xu, Xin
    Zhang, Xinglong
    Qian, Lilin
    Zhou, Xing
    IEEE ACCESS, 2020, 8 : 209776 - 209789
  • [6] A Survey of Deep Reinforcement Learning Algorithms for Motion Planning and Control of Autonomous Vehicles
    Ye, Fei
    Zhang, Shen
    Wang, Pin
    Chan, Ching-Yao
    2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, : 1073 - 1080
  • [7] Receding-Horizon Reinforcement Learning Approach for Kinodynamic Motion Planning of Autonomous Vehicles
    Zhang, Xinglong
    Jiang, Yan
    Lu, Yang
    Xu, Xin
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2022, 7 (03): : 556 - 568
  • [8] CommonRoad-RL: A Configurable Reinforcement Learning Environment for Motion Planning of Autonomous Vehicles
    Wang, Xiao
    Krasowski, Hanna
    Althoff, Matthias
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 466 - 472
  • [9] Receding-Horizon Reinforcement Learning Approach for Kinodynamic Motion Planning of Autonomous Vehicles
    Zhang, Xinglong
    Jiang, Yan
    Lu, Yang
    Xu, Xin
    IEEE Transactions on Intelligent Vehicles, 2022, 7 (03): : 556 - 568
  • [10] Adaptive Formation Motion Planning and Control of Autonomous Underwater Vehicles Using Deep Reinforcement Learning
    Hadi, Behnaz
    Khosravi, Alireza
    Sarhadi, Pouria
    IEEE JOURNAL OF OCEANIC ENGINEERING, 2024, 49 (01) : 311 - 328