Fuzzy c-Regression Models Combined with Support Vector Regression

被引:0
|
作者
Higuchi, Tatsuya [1 ]
Miyamoto, Sadaaki [2 ]
机构
[1] Univ Tsukuba, Grad Sch Syst & Informat Engn, Tsukuba, Ibaraki 3058573, Japan
[2] Univ Tsukuba, Dept Risk Engn, Tsukuba, Ibaraki 3058573, Japan
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fuzzy c-regression models (FCRM) give us multiple clusters and regression models of each cluster simultaneously, while support vector regression models (SVRM) involve kernel methods which enable us to analyze non-linear structure of the data. We combine these two concepts and propose the united fuzzy c-support vector regression models (FC-SVRM). In case that c is unknown, we introduce sequential regression models (SRM) into SVRM, and propose support vector sequential regression models (SVSRM). We show numerical examples to compare results from these methods.
引用
收藏
页码:2489 / 2493
页数:5
相关论文
共 50 条
  • [31] Fuzzy ordinal support vector regression
    Liu, GL
    Peng, B
    ICEMI 2005: Conference Proceedings of the Seventh International Conference on Electronic Measurement & Instruments, Vol 8, 2005, : 577 - 581
  • [32] Support vector fuzzy regression machines
    Hong, DH
    Hwang, CH
    FUZZY SETS AND SYSTEMS, 2003, 138 (02) : 271 - 281
  • [33] Fuzzy c-regression models based on Euclidean particle swarm optimization in noisy environment
    Soltani, Moez
    Chaari, Abdelkader
    2013 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2013, : 585 - 589
  • [34] Multi-channels time-domain-constrained fuzzy c-regression models
    Owczarek, A
    Gacek, A
    Leski, JM
    COMPUTER RECOGNITION SYSTEMS, PROCEEDINGS, 2005, : 263 - 270
  • [35] Evolving Fuzzy-Model-based on c-Regression Clustering
    Skrjanc, Igor
    Dovzan, Dejan
    Gomide, Fernando
    2014 IEEE CONFERENCE ON EVOLVING AND ADAPTIVE INTELLIGENT SYSTEMS (EAIS), 2014,
  • [36] Adaptive Fuzzy C-Regression Modeling for Time Series Forecasting
    Maciel, Leandro
    Lemos, Andre
    Ballini, Rosangela
    Gomide, Fernando
    PROCEEDINGS OF THE 2015 CONFERENCE OF THE INTERNATIONAL FUZZY SYSTEMS ASSOCIATION AND THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY, 2015, 89 : 917 - 924
  • [37] Hybrid System Identification by Incremental Fuzzy C-regression Clustering
    Blazic, Saso
    Skrjanc, Igor
    2020 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2020,
  • [38] Fuzzy c-regression model with a new cluster validity criterion
    Kung, CC
    Lin, CC
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS, VOL 1 & 2, 2002, : 1499 - 1504
  • [39] A New Fuzzy Time Series Model Based on Fuzzy C-Regression Model
    Dincer, Nevin Guler
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2018, 20 (06) : 1872 - 1887
  • [40] A New Fuzzy Time Series Model Based on Fuzzy C-Regression Model
    Nevin Güler Dincer
    International Journal of Fuzzy Systems, 2018, 20 : 1872 - 1887