Deep Learning-Based Text Recognition of Agricultural Regulatory Document

被引:1
|
作者
Leong, Fwa Hua [1 ]
Haur, Chan Farn [2 ]
机构
[1] Singapore Management Univ, 81 Victoria St, Singapore 188065, Singapore
[2] Syngenta Asia Pacific Pte Ltd, 1 Harbourfront Ave,Keppel Bay Tower, Singapore 098632, Singapore
关键词
Deep learning; Text detection; Optical character recognition; Regulatory document;
D O I
10.1007/978-3-031-16210-7_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, an OCR system based on deep learning techniques was deployed to digitize scanned agricultural regulatory documents comprising of certificates and labels. Recognition of the certificates and labels is challenging as they are scanned images of the hard copy form and the layout and size of the text as well as the languages vary between the various countries (due to diverse regulatory requirements). We evaluated and compared between various state-of-the-art deep learning-based text detection and recognition model as well as a packaged OCR library - Tesseract. We then adopted a two-stage approach comprising of text detection using Character Region Awareness For Text (CRAFT) followed by recognition using OCR branch of a multi-lingual text recognition algorithm E2E-MLT. A sliding windows text matcher is used to enhance the extraction of the required information such as trade names, active ingredients and crops. Initial evaluation revealed that the system performs well with a high accuracy of 91.9% for the recognition of trade names in certificates and labels and the system is currently deployed for use in Philippines, one of our collaborator's sites.
引用
收藏
页码:223 / 234
页数:12
相关论文
共 50 条
  • [41] Deep learning-based face detection and recognition on drones
    Rostami M.
    Farajollahi A.
    Parvin H.
    Journal of Ambient Intelligence and Humanized Computing, 2024, 15 (01) : 373 - 387
  • [42] Deep Learning-Based Improved Object Recognition in Warehouses
    Fouzia, Syeda
    Bell, Mark
    Klette, Reinhard
    IMAGE AND VIDEO TECHNOLOGY (PSIVT 2017), 2018, 10749 : 350 - 365
  • [43] Deep learning-based recognition and parameter characterization of antibubbles
    Bai, Lichun
    Chai, Zishu
    Lin, Sen
    CHEMICAL ENGINEERING SCIENCE, 2025, 304
  • [44] Special Issue on Deep Learning-Based Action Recognition
    Lee, Hyo Jong
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [45] Deep learning-based garbage image recognition algorithm
    Li, Yuefei
    Liu, Wei
    APPLIED NANOSCIENCE, 2021, 13 (2) : 1415 - 1424
  • [46] Smartphone Location Recognition: A Deep Learning-Based Approach
    Klein, Itzik
    SENSORS, 2020, 20 (01)
  • [47] Deep Learning-Based Wrist Vascular Biometric Recognition
    Marattukalam, Felix
    Abdulla, Waleed
    Cole, David
    Gulati, Pranav
    SENSORS, 2023, 23 (06)
  • [48] Deep Learning-Based Human Action Recognition in Videos
    Li, Song
    Shi, Qian
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2025, 34 (01)
  • [49] Deep Learning-Based Sentiment Analysis for Roman Urdu Text
    Ghulam, Hussain
    Zeng, Feng
    Li, Wenjia
    Xiao, Yutong
    2018 INTERNATIONAL CONFERENCE ON IDENTIFICATION, INFORMATION AND KNOWLEDGE IN THE INTERNET OF THINGS, 2019, 147 : 131 - 135
  • [50] Deep Learning-Based Text Emotion Analysis for Legal Anomie
    She, Botong
    FRONTIERS IN PSYCHOLOGY, 2022, 13