Irradiance scintillation for Gaussian-beam wave propagating through weak non-Kolmogorov turbulence

被引:34
|
作者
Cui, Linyan [1 ]
Xue, Bindang [1 ]
Cao, Lei [1 ]
Zheng, Shiling [1 ]
Xue, Wenfang [2 ]
Bai, Xiangzhi [1 ]
Cao, Xiaoguang [1 ]
Zhou, Fugen [1 ]
机构
[1] Beihang Univ, Sch Astronaut, Beijing 100191, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
来源
OPTICS EXPRESS | 2011年 / 19卷 / 18期
关键词
LOG-AMPLITUDE VARIANCE; STRATOSPHERIC TURBULENCE; SPECTRAL MODEL; TROPOSPHERE;
D O I
10.1364/OE.19.016872
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Kolmogorov turbulence theory based models cannot be directly applied in non-Kolmogorov turbulence case, which has been reported recently by increasing experimental evidence and theoretical investigation. In this study, based on the generalized von Karman spectral model, the theoretical expression of the irradiance scintillation index is derived for Gaussian-beam wave propagating through weak non-Kolmogorov turbulence with horizontal path. In the derivation, the expression is divided into two parts for physical analysis purpose and mathematical analysis convenience. This expression considers the influences of finite turbulence inner and outer scales and has a general spectral power law value in the range 3 to 4 instead of standard power law value of 11/3 (for Kolmogorov turbulence). Numerical simulations are conducted to investigate the influences. (C) 2011 Optical Society of America
引用
收藏
页码:16872 / 16884
页数:13
相关论文
共 50 条
  • [31] Influence of non-Kolmogorov atmospheric turbulence on scintillation of Gaussian array beams
    Lu, Fang
    Zhao, Dan
    Liu, Chunbo
    Han, Xiang'e
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2016, 45 (07):
  • [32] Fiber-coupling efficiency for optical wave propagating through non-Kolmogorov turbulence
    Tan, Liying
    Zhai, Chao
    Yu, Siyuan
    Cao, Yubin
    Ma, Jing
    OPTICS COMMUNICATIONS, 2014, 331 : 291 - 296
  • [33] Polarization properties of Square Multi-Gaussian Schell-Model beam propagating through non-Kolmogorov turbulence
    Zhang, Hanmou
    Fu, Wenyu
    OPTIK, 2017, 134 : 161 - 169
  • [34] Average intensity of flattened Gaussian beam in non-Kolmogorov turbulence
    Chu, Xiuxiang
    Qiao, Chunhong
    Feng, Xiaoxing
    OPTICS AND LASER TECHNOLOGY, 2011, 43 (07): : 1150 - 1154
  • [35] Effects of inner and outer scale on the modulation transfer function for a Gaussian wave propagating through anisotropic non-Kolmogorov turbulence
    Chao Gao
    Xiaofeng Li
    Optical Review, 2017, 24 : 253 - 259
  • [36] Temporal-frequency spectra for optical wave propagating through non-Kolmogorov turbulence
    Du, Wenhe
    Tan, Liying
    Ma, Jing
    Jiang, Yijun
    OPTICS EXPRESS, 2010, 18 (06): : 5763 - 5775
  • [37] Scintillation and aperture averaging for Gaussian beams through non-Kolmogorov maritime atmospheric turbulence channels
    Cheng, Mingjian
    Guo, Lixin
    Zhang, Yixin
    OPTICS EXPRESS, 2015, 23 (25): : 32606 - 32621
  • [38] Effective radius of curvature of Hermite-Gaussian beams propagating through non-Kolmogorov turbulence
    Huang, Yongping
    Zhao, Guangpu
    Gao, Zenghui
    Wang, Fanhou
    OPTIK, 2013, 124 (01): : 67 - 70
  • [39] Average spreading of a Gaussian beam array in non-Kolmogorov turbulence
    Zhou, Pu
    Ma, Yanxing
    Wang, Xiaolin
    Zhao, Haichuan
    Liu, Zejin
    OPTICS LETTERS, 2010, 35 (07) : 1043 - 1045
  • [40] Effects of inner and outer scale on the modulation transfer function for a Gaussian wave propagating through anisotropic non-Kolmogorov turbulence
    Gao, Chao
    Li, Xiaofeng
    OPTICAL REVIEW, 2017, 24 (03) : 253 - 259