Induction Networks for Few-Shot Text Classification

被引:0
|
作者
Geng, Ruiying [1 ,2 ]
Li, Binhua [2 ]
Li, Yongbin [2 ]
Zhu, Xiaodan [3 ]
Jian, Ping [1 ]
Sun, Jian [2 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
[2] Alibaba Grp, Beijing, Peoples R China
[3] Queens Univ, ECE, Kingston, ON, Canada
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Text classification tends to struggle when data is deficient or when it needs to adapt to unseen classes. In such challenging scenarios, recent studies have used meta-learning to simulate the few-shot task, in which new queries are compared to a small support set at the sample-wise level. However, this sample-wise comparison may be severely disturbed by the various expressions in the same class. Therefore, we should be able to learn a general representation of each class in the support set and then compare it to new queries. In this paper, we propose a novel Induction Network to learn such a generalized class-wise representation, by innovatively leveraging the dynamic routing algorithm in meta-learning. In this way, we find the model is able to induce and generalize better. We evaluate the proposed model on a well-studied sentiment classification dataset (English) and a real-world dialogue intent classification dataset (Chinese). Experiment results show that on both datasets, the proposed model significantly outperforms the existing state-of-the-art approaches, proving the effectiveness of class-wise generalization in few-shot text classification.
引用
收藏
页码:3904 / 3913
页数:10
相关论文
共 50 条
  • [31] Few-Shot Text and Image Classification via Analogical Transfer Learning
    Liu, Wenhe
    Chang, Xiaojun
    Yan, Yan
    Yang, Yi
    Hauptmann, Alexander G.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2018, 9 (06)
  • [32] Knowledge-Enhanced Prompt Learning for Few-Shot Text Classification
    Liu, Jinshuo
    Yang, Lu
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (04)
  • [33] CPCL: Conceptual prototypical contrastive learning for Few-Shot text classification
    Cheng, Tao
    Cheng, Hua
    Fang, Yiquan
    Liu, Yufei
    Gao, Caiting
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (06) : 11963 - 11975
  • [34] CLUR: Uncertainty Estimation for Few-Shot Text Classification with Contrastive Learning
    He, Jianfeng
    Zhang, Xuchao
    Lei, Shuo
    Alhamadani, Abdulaziz
    Chen, Fanglan
    Xiao, Bei
    Lu, Chang-Tien
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 698 - 710
  • [35] Knowledge-Guided Prompt Learning for Few-Shot Text Classification
    Wang, Liangguo
    Chen, Ruoyu
    Li, Li
    ELECTRONICS, 2023, 12 (06)
  • [36] Few-Shot Text Classification with Global-Local Feature Information
    Wang, Depei
    Wang, Zhuowei
    Cheng, Lianglun
    Zhang, Weiwen
    SENSORS, 2022, 22 (12)
  • [37] Multitask-Based Cluster Transmission for Few-Shot Text Classification
    Dong, Kaifang
    Xu, Fuyong
    Jiang, Baoxing
    Li, Hongye
    Liu, Peiyu
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, KSEM 2023, 2023, 14117 : 66 - 77
  • [38] Hard-Positive Prototypical Networks for Few-Shot Classification
    Fazaeli-Javan, Mahsa
    Monsefi, Reza
    Ghiasi-Shirazi, Kamaledin
    IEEE Access, 2025, 13 : 41054 - 41067
  • [39] Prototypical networks with unlabeled data for few-shot node classification
    Wang, Ningrui
    Lai, Yujing
    Chen, Chuan
    Zheng, Zibin
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 145
  • [40] Few-Shot Audio Classification with Attentional Graph Neural Networks
    Zhang, Shilei
    Qin, Yong
    Sun, Kewei
    Lin, Yonghua
    INTERSPEECH 2019, 2019, : 3649 - 3653