Photonic-band-gap gyrotron amplifier with picosecond pulses

被引:36
|
作者
Nanni, Emilio A. [1 ,2 ]
Jawla, Sudheer [1 ]
Lewis, Samantha M. [3 ]
Shapiro, Michael A. [1 ]
Temkin, Richard J. [1 ]
机构
[1] MIT, Plasma Sci & Fus Ctr, 77 Mass Ave, Cambridge, MA 02139 USA
[2] Stanford Univ, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[3] Univ Calif Berkeley, Dept Nucl Engn, Berkeley, CA 94720 USA
基金
美国国家卫生研究院;
关键词
DYNAMIC NUCLEAR-POLARIZATION;
D O I
10.1063/1.5006348
中图分类号
O59 [应用物理学];
学科分类号
摘要
We report the amplification of 250GHz pulses as short as 260 ps without observation of pulse broadening using a photonic-band-gap circuit gyrotron traveling-wave-amplifier. The gyrotron amplifier operates with a device gain of 38 dB and an instantaneous bandwidth of 8GHz. The operational bandwidth of the amplifier can be tuned over 16GHz by adjusting the operating voltage of the electron beam and the magnetic field. The amplifier uses a 30cm long photonic-band-gap interaction circuit to confine the desired TE03-like operating mode while suppressing lower order modes which can result in undesired oscillations. The circuit gain is >55 dB for a beam voltage of 23 kV and a current of 700mA. These results demonstrate the wide bandwidths and a high gain achievable with gyrotron amplifiers. The amplification of picosecond pulses of variable lengths, 260-800 ps, shows good agreement with the theory using the coupled dispersion relation and the gain-spectrum of the amplifier as measured with quasi-CW input pulses. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Gap deformation and classical wave localization in disordered two-dimensional photonic-band-gap materials
    Lidorikis, E
    Sigalas, MM
    Economou, EN
    Soukoulis, CM
    PHYSICAL REVIEW B, 2000, 61 (20) : 13458 - 13464
  • [42] In situ tuning of a photonic band gap with laser pulses
    Pasquazi, A.
    Stivala, S.
    Assanto, G.
    Amendola, V.
    Meneghetti, M.
    Cucini, M.
    Comoretto, D.
    APPLIED PHYSICS LETTERS, 2008, 93 (09)
  • [43] High order mode formation of externally coupled hybrid photonic-band-gap cavity
    Jeon, Seok-Gy
    Shin, Young-Min
    Jang, Kyu-Ha
    Han, Seong-Tae
    So, Jin-Kyu
    Joo, Young-Do
    Park, Gun-Sik
    APPLIED PHYSICS LETTERS, 2007, 90 (02)
  • [44] High order mode oscillation in a terahertz photonic-band-gap multibeam reflex klystron
    Jang, Kyu-Ha
    Jeon, Seok-Gy
    Kim, Jung-Il
    Won, Jong-Hyo
    So, Jin-Kyu
    Bak, Seung-Ho
    Srivastava, Anurag
    Jung, Sun-Shin
    Park, Gun-Sik
    APPLIED PHYSICS LETTERS, 2008, 93 (21)
  • [45] Compression of an intensive light pulse in photonic-band-gap structures with a dense resonant medium
    Novitsky, Denis V.
    PHYSICAL REVIEW A, 2009, 79 (02):
  • [46] ELECTROMAGNETIC-WAVE PROPAGATION THROUGH DISPERSIVE AND ABSORPTIVE PHOTONIC-BAND-GAP MATERIALS
    SIGALAS, MM
    SOUKOULIS, CM
    CHAN, CT
    HO, KM
    PHYSICAL REVIEW B, 1994, 49 (16): : 11080 - 11087
  • [47] Compact optical one-way waveguide isolators for photonic-band-gap microchips
    Takeda, Hiroyuki
    John, Sajeev
    PHYSICAL REVIEW A, 2008, 78 (02):
  • [48] Photonic-band-gap engineering for volume plasmon polaritons in multiscale multilayer hyperbolic metamaterials
    Zhukovsky, Sergei V.
    Orlov, Alexey A.
    Babicheva, Viktoriia E.
    Lavrinenko, Andrei V.
    Sipe, J. E.
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [49] Quantum enhancement of qutrit dynamics through driving field and photonic-band-gap crystal
    Yousefi, Negar Nikdel
    Mortezapour, Ali
    Naeimi, Ghasem
    Nosrati, Farzam
    Pariz, Aref
    Lo Franco, Rosario
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [50] Two-atom problem and polariton-impurity band in dispersive media and photonic-band-gap materials
    Rupasov, VI
    Singh, M
    PHYSICAL REVIEW A, 1997, 56 (01) : 898 - 904