Universal scaling and criticality of extremes in random matrix theory

被引:1
|
作者
Saber, Sina [1 ]
Saberi, Abbas Ali [1 ,2 ]
机构
[1] Univ Tehran, Dept Phys, POB 14395-547, Tehran, Iran
[2] Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, Germany
关键词
CHARACTERISTIC VECTORS; BORDERED MATRICES; DISTRIBUTIONS; TRANSITION;
D O I
10.1103/PhysRevE.105.L022102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a random matrix realization of a two-dimensional percolation model with the occupation probability p. We find that the behavior of the model is governed by the two first extreme eigenvalues. While the second extreme eigenvalue resides on the moving edge of the semicircle bulk distribution with an additional semicircle functionality on p, the first extreme exhibits a disjoint isolated Gaussian statistics which is responsible for the emergence of a rich finite-size scaling and criticality. Our extensive numerical simulations along with analytical arguments unravel the power-law divergences due to the coalescence of the first two extreme eigenvalues in the thermodynamic limit. We develop a scaling law that provides a universal framework in terms of a set of scaling exponents uncovering the full finite-size scaling behavior of the extreme eigenvalue's fluctuation. Our study may provide a simple practical approach to capture the criticality in complex systems and their inverse problems with a possible extension to the interacting systems.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Scaling near random criticality in two-dimensional Dirac fermions
    Morita, Y
    Hatsugai, Y
    PHYSICAL REVIEW B, 1998, 58 (11): : 6680 - 6683
  • [32] A universal scaling theory for complexity of analog computation
    Avizrats, Yaniv S.
    Fishman, Shmuel
    Feinberg, Joshua
    PHYSICS LETTERS A, 2007, 371 (04) : 271 - 274
  • [33] Random matrix theory and random uncertainties modeling
    Soize, C.
    COMPUTATIONAL STOCHASTIC MECHANICS, 2003, : 575 - 581
  • [34] Bifurcations and random matrix theory
    Pollner, P
    Eckhardt, B
    EUROPHYSICS LETTERS, 2001, 53 (06): : 703 - 708
  • [35] Combinatorics and random matrix theory
    Tao, Terence
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 57 (01) : 161 - 169
  • [36] Quasiclassical random matrix theory
    Prange, RE
    PHYSICAL REVIEW LETTERS, 1996, 77 (12) : 2447 - 2450
  • [37] Superstatistics in random matrix theory
    Abul-Magd, AY
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 361 (01) : 41 - 54
  • [38] QCD and random matrix theory
    Jackson, AD
    NUCLEAR PHYSICS A, 1998, 638 (1-2) : 329C - 338C
  • [39] Octonions in random matrix theory
    Forrester, Peter J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2017, 473 (2200):
  • [40] A random matrix theory of decoherence
    Gorin, T.
    Pineda, C.
    Kohler, H.
    Seligman, T. H.
    NEW JOURNAL OF PHYSICS, 2008, 10