Positive Curvature and Hamiltonian Monte Carlo

被引:0
|
作者
Seiler, Christof [1 ]
Rubinstein-Salzedo, Simon [1 ]
Holmes, Susan [1 ]
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
基金
瑞士国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Jacobi metric introduced in mathematical physics can be used to analyze Hamiltonian Monte Carlo (HMC). In a geometrical setting, each step of HMC corresponds to a geodesic on a Riemannian manifold with a Jacobi metric. Our calculation of the sectional curvature of this HMC manifold allows us to see that it is positive in cases such as sampling from a high dimensional multivariate Gaussian. We show that positive curvature can be used to prove theoretical concentration results for HMC Markov chains.
引用
收藏
页数:9
相关论文
共 50 条
  • [11] RANDOMIZED HAMILTONIAN MONTE CARLO
    Bou-Rabee, Nawaf
    Maria Sanz-Serna, Jesus
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (04): : 2159 - 2194
  • [12] Wormhole Hamiltonian Monte Carlo
    Lan, Shiwei
    Streets, Jeffrey
    Shahbaba, Babak
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1953 - 1959
  • [13] Adaptive Tuning of Hamiltonian Monte Carlo Within Sequential Monte Carlo
    Buchholz, Alexander
    Chopin, Nicolas
    Jacob, Pierre E.
    BAYESIAN ANALYSIS, 2021, 16 (03): : 745 - 771
  • [14] On the geometric ergodicity of Hamiltonian Monte Carlo
    Livingstone, Samuel
    Betancourt, Michael
    Byrne, Simon
    Girolami, Mark
    BERNOULLI, 2019, 25 (4A) : 3109 - 3138
  • [15] Split Hamiltonian Monte Carlo revisited
    Fernando Casas
    Jesús María Sanz-Serna
    Luke Shaw
    Statistics and Computing, 2022, 32
  • [16] On Lq convergence of the Hamiltonian Monte Carlo
    Ghosh, Soumyadip
    Lu, Yingdong
    Nowicki, Tomasz
    JOURNAL OF APPLIED ANALYSIS, 2023, 29 (01) : 161 - 169
  • [17] Split Hamiltonian Monte Carlo revisited
    Casas, Fernando
    Sanz-Serna, Jesus Maria
    Shaw, Luke
    STATISTICS AND COMPUTING, 2022, 32 (05)
  • [18] Stochastic Fractional Hamiltonian Monte Carlo
    Ye, Nanyang
    Zhu, Zhanxing
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 3019 - 3025
  • [19] Exponential Integration for Hamiltonian Monte Carlo
    Chao, Wei-Lun
    Solomon, Justin
    Michels, Dominik L.
    Sha, Fei
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1142 - 1151
  • [20] The geometric foundations of Hamiltonian Monte Carlo
    Betancourt, Michael
    Byrne, Simon
    Livingstone, Sam
    Girolami, Mark
    BERNOULLI, 2017, 23 (4A) : 2257 - 2298