Towards Generating Real-World Time Series Data

被引:19
|
作者
Pei, Hengzhi [1 ,2 ]
Ren, Kan [2 ]
Yang, Yuqing [2 ]
Liu, Chang [3 ]
Qin, Tao [3 ]
Li, Dongsheng [2 ]
机构
[1] Univ Illinois, Urbana, IL USA
[2] Microsoft Res Asia, Shanghai, Peoples R China
[3] Microsoft Res Asia, Beijing, Peoples R China
关键词
Time series; data generation; missing values;
D O I
10.1109/ICDM51629.2021.00058
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series data generation has drawn increasing attention in recent years. Several generative adversarial network (GAN) based methods have been proposed to tackle the problem usually with the assumption that the targeted time series data are well-formatted and complete. However, real-world time series (RTS) data are far away from this utopia, e.g., long sequences with variable lengths and informative missing data raise intractable challenges for designing powerful generation algorithms. In this paper, we propose a novel generative framework for RTS data - RTSGAN to tackle the aforementioned challenges. RTSGAN first learns an encoder-decoder module which provides a mapping between a time series instance and a fixed-dimension latent vector and then learns a generation module to generate vectors in the same latent space. By combining the generator and the decoder, RTSGAN is able to generate RTS which respect the original feature distributions and the temporal dynamics. To generate time series with missing values, we further equip RTSGAN with an observation embedding layer and a decide-and-generate decoder to better utilize the informative missing patterns. Experiments on the four RTS datasets show that the proposed framework outperforms the previous generation methods in terms of synthetic data utility for downstream classification and prediction tasks. Our code is available at https://seqml.github.io/rtsgan.
引用
收藏
页码:469 / 478
页数:10
相关论文
共 50 条
  • [31] Intelligent techniques for forecasting multiple time series in real-world systems
    Wagner, Neal
    Michalewicz, Zbigniew
    Schellenberg, Sven
    Chiriac, Constantin
    Mohais, Arvind
    INTERNATIONAL JOURNAL OF INTELLIGENT COMPUTING AND CYBERNETICS, 2011, 4 (03) : 284 - 310
  • [32] Time Series Representation for Real-World Applications of Deep Neural Networks
    Levasseur, Guillaume
    Bersini, Hugues
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [33] Editorial: Real-world data and real-world evidence in lung cancer
    Gristina, Valerio
    Eze, Chukwuka
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [34] Inaccurate Real-World Data Does Not Provide Real-World Answers
    Buffet, Gabriela
    Mendoza-Sassi, Raul
    Fysekidis, Marinos
    AMERICAN JOURNAL OF THERAPEUTICS, 2021, 28 (05) : E596 - E598
  • [35] Probabilistic prediction of real-world time series: A local regression approach
    Laio, Francesco
    Ridolfi, Luca
    Tamea, Stefania
    GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (03)
  • [36] Finding metastable states in real-world time series with recurrence networks
    Vega, I.
    Schuette, Ch.
    Conrad, T. O. F.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 445 : 1 - 17
  • [37] For insights into the real world, consider real-world data
    Raoof, Sana
    Kurzrock, Razelle
    SCIENCE TRANSLATIONAL MEDICINE, 2022, 14 (673)
  • [38] Editorial: Real-world data and real-world evidence in hematologic malignancies
    Malagola, Michele
    Ohgami, Robert
    Greco, Raffaella
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [39] When can real-world data generate real-world evidence?
    Rahman, Motiur
    Dal Pan, Gerald
    Stein, Peter
    Levenson, Mark
    Kraus, Stefanie
    Chakravarty, Aloka
    Rivera, Donna R.
    Forshee, Richard
    Concato, John
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2024, 33 (01)
  • [40] Real-World or Controlled Clinical Trial Data in Real-World Practice
    Wu, Ting-Hui
    Yang, James Chih-Hsin
    JOURNAL OF THORACIC ONCOLOGY, 2018, 13 (04) : 470 - 472