CREB regulates hepatic gluconeogenesis through the coactivator PGC-1

被引:1174
|
作者
Herzig, S
Long, FX
Jhala, US
Hedrick, S
Quinn, R
Bauer, A
Rudolph, D
Schutz, G
Yoon, C
Puigserver, P
Spiegelman, B
Montminy, M
机构
[1] Salk Inst Biol Studies, Peptide Biol Labs, La Jolla, CA 92037 USA
[2] Joslin Diabet Ctr, Boston, MA 02215 USA
[3] Deutsch Krebsforschungszentrum, D-69120 Heidelberg, Germany
[4] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Cell Biol, Boston, MA 02115 USA
关键词
D O I
10.1038/35093131
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
When mammals fast, glucose homeostasis is achieved by triggering expression of gluconeogenic genes in response to glucagon and glucocorticoids. The pathways act synergistically to induce gluconeogenesis (glucose synthesis), although the underlying mechanism has not been determined(1-4). Here we show that mice carrying a targeted disruption of the cyclic AMP (cAMP) response element binding (CREB) protein gene, or overexpressing a dominant-negative CREB inhibitor, exhibit fasting hyperglycaemia and reduced expression of gluconeogenic enzymes. CREB was found to induce expression of the gluconeogenic programme through the nuclear receptor coactivator PGC-1, which is shown here to be a direct target for CREB regulation in vivo. Overexpression of PGC-1 in CREB-dercient mice restored glucose homeostasis and rescued expression of gluconeogenic genes. In transient assays, PGC-1 potentiated glucocorticoid induction of the gene for phosphoenolpyruvate carboxykinase (PEPCK), the rate-limiting enzyme in gluconeogenesis. PGC-1 promotes cooperativity between cyclic AMP and glucocorticoid signalling pathways during hepatic gluconeogenesis. Fasting hyperglycaemia is strongly correlated with type II diabetes, so our results suggest that the activation of PGC-1 by CREB in liver contributes importantly to the pathogenesis of this disease.
引用
收藏
页码:179 / 183
页数:6
相关论文
共 50 条
  • [41] Activation of nuclear receptor coactivator PGC-1α by arginine methylation
    Teyssier, C
    Ma, H
    Emter, R
    Kralli, A
    Stallcup, MR
    GENES & DEVELOPMENT, 2005, 19 (12) : 1466 - 1473
  • [42] Nitric oxide regulates mitochondrial oxidative stress protection via the transcriptional coactivator PGC-1 alpha
    Borniquel, S.
    Valle, I
    Cadenas, S.
    Lamas, S.
    Monsalve, M.
    CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS, 2007, 19 (01): : 56 - 56
  • [43] CRTC2 Is a Coactivator of GR and Couples GR and CREB in the Regulation of Hepatic Gluconeogenesis
    Hill, Micah J.
    Suzuki, Shigeru
    Segars, James H.
    Kino, Tomoshige
    MOLECULAR ENDOCRINOLOGY, 2016, 30 (01) : 104 - 117
  • [44] Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α
    Handschin, C
    Lin, JD
    Rhee, J
    Peyer, AK
    Chin, S
    Wu, PH
    Meyer, UA
    Spiegelman, BM
    CELL, 2005, 122 (04) : 505 - 515
  • [45] The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis
    Wang, Yiguo
    Vera, Liliana
    Fischer, Wolfgang H.
    Montminy, Marc
    NATURE, 2009, 460 (7254) : 534 - U116
  • [46] The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis
    Yiguo Wang
    Liliana Vera
    Wolfgang H. Fischer
    Marc Montminy
    Nature, 2009, 460 : 534 - 537
  • [47] Circadian Metabolic Regulation through Crosstalk between Casein Kinase 1δ and Transcriptional Coactivator PGC-1α
    Li, Siming
    Chen, Xiao-Wei
    Yu, Lei
    Saltiel, Alan R.
    Lin, Jiandie D.
    MOLECULAR ENDOCRINOLOGY, 2011, 25 (12) : 2084 - 2093
  • [48] Modulation of PGC-1 Coactivator Pathways in Brown Fat Differentiation through LRP130
    Cooper, Marcus P.
    Uldry, Marc
    Kajimura, Shingo
    Arany, Zoltan
    Spiegelman, Bruce M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2008, 283 (46) : 31960 - 31967
  • [49] miR-696 plays a role in hepatic gluconeogenesis in ob/ob mice by targeting PGC-1α
    Fang, Zhijuan
    Li, Peng
    Jia, Wenhui
    Jiang, Ting
    Wang, Zhongyun
    Xiang, Yang
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2016, 38 (03) : 845 - 852
  • [50] The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator
    Tavares, Clint D. J.
    Sharabi, Kfir
    Dominy, John E.
    Lee, Yoonjin
    Isasa, Marta
    Orozco, Jose M.
    Jedrychowski, Mark P.
    Kamenecka, Theodore M.
    Griffin, Patrick R.
    Gygi, Steven P.
    Puigserver, Pere
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2016, 291 (20) : 10635 - 10645