CONVERGENCE ANALYSIS OF ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR A FAMILY OF NONCONVEX PROBLEMS

被引:571
|
作者
Hong, Mingyi [1 ]
Luo, Zhi-Quan [2 ,3 ]
Razaviyayn, Meisam [4 ]
机构
[1] Iowa State Univ, Dept Ind & Mfg Syst Engn, Ames, IA 50011 USA
[2] Chinese Univ Hong Kong, Shenzhen, Peoples R China
[3] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
[4] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
nonconvex optimization; ADMM; consensus; sharing; ALGORITHMS;
D O I
10.1137/140990309
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The alternating direction method of multipliers (ADMM) is widely used to solve large-scale linearly constrained optimization problems, convex or nonconvex, in many engineering fields. However there is a general lack of theoretical understanding of the algorithm when the objective function is nonconvex. In this paper we analyze the convergence of the ADMM for solving certain nonconvex consensus and sharing problems. We show that the classical ADMM converges to the set of stationary solutions, provided that the penalty parameter in the augmented Lagrangian is chosen to be sufficiently large. For the sharing problems, we show that the ADMM is convergent regardless of the number of variable blocks. Our analysis does not impose any assumptions on the iterates generated by the algorithm and is broadly applicable to many ADMM variants involving proximal update rules and various flexible block selection rules.
引用
收藏
页码:337 / 364
页数:28
相关论文
共 50 条
  • [31] A proximal alternating direction method of multipliers for a minimization problem with nonconvex constraints
    Zheng Peng
    Jianli Chen
    Wenxing Zhu
    Journal of Global Optimization, 2015, 62 : 711 - 728
  • [32] An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization
    Jiawei Xu
    Miantao Chao
    Journal of Applied Mathematics and Computing, 2022, 68 : 1 - 27
  • [33] An inertial Bregman generalized alternating direction method of multipliers for nonconvex optimization
    Xu, Jiawei
    Chao, Miantao
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 1757 - 1783
  • [34] Convergence Analysis of Alternating Direction Method of Multipliers for a Class of Separable Convex Programming
    Jia, Zehui
    Guo, Ke
    Cai, Xingju
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [35] On the Convergence of Alternating Direction Lagrangian Methods for Nonconvex Structured Optimization Problems
    Magnusson, Sindri
    Weeraddana, Pradeep Chathuranga
    Rabbat, Michael G.
    Fischione, Carlo
    IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, 2016, 3 (03): : 296 - 309
  • [36] ON THE CONVERGENCE RATE OF THE BI-ALTERNATING DIRECTION METHOD OF MULTIPLIERS
    Zhang, Guoqiang
    Heusdens, Richard
    Kleijn, W. B.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [37] On the Global and Linear Convergence of the Generalized Alternating Direction Method of Multipliers
    Deng, Wei
    Yin, Wotao
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 66 (03) : 889 - 916
  • [38] ALTERNATING DIRECTION METHOD OF MULTIPLIERS FOR LINEAR INVERSE PROBLEMS
    Jiao, Yuling
    Jin, Qinian
    Lu, Xiliang
    Wang, Weijie
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2114 - 2137
  • [39] An alternating direction method of multipliers for tensor complementarity problems
    Haoran Zhu
    Liping Zhang
    Computational and Applied Mathematics, 2021, 40
  • [40] An alternating direction method of multipliers for tensor complementarity problems
    Zhu, Haoran
    Zhang, Liping
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04):