A multi-objective algorithm for multi-label filter feature selection problem

被引:22
|
作者
Dong, Hongbin [1 ]
Sun, Jing [1 ]
Li, Tao [1 ]
Ding, Rui [2 ]
Sun, Xiaohang [1 ]
机构
[1] Harbin Engn Univ, Dept Comp Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
[2] Mudanjiang Normal Univ, Dept Comp Sci & Technol, Mudanjiang 157000, Heilongjiang, Peoples R China
基金
美国国家科学基金会;
关键词
Feature selection; Multi-objective optimization; Multi-label; PSO; PARTICLE SWARM OPTIMIZATION; FEATURE SUBSET-SELECTION; DIFFERENTIAL EVOLUTION; GENETIC ALGORITHM; MUTUAL INFORMATION; HYBRID APPROACH; CLASSIFICATION; PSO; MUTATION; SCORE;
D O I
10.1007/s10489-020-01785-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature selection is an important data preprocessing method before classification. Multi-objective optimization algorithms have been proved an effective way to solve feature selection problems. However, there are few studies on multi-objective optimization feature selection methods for multi-label data. In this paper, a multi-objective multi-label filter feature selection algorithm based on two particle swarms (MOMFS) is proposed. We use mutual information to measure the relevance between features and label sets, and the redundancy between features, which are taken as two objectives. In order to avoid Particle Swarm Optimization (PSO) from falling into the local optimum and obtaining a false Pareto front, we employ two swarms to optimize the two objectives separately and propose an improved hybrid topology based on particle's fitness value. Furthermore, an archive maintenance strategy is introduced to maintain the distribution of archive. In order to study the effectiveness of the proposed algorithm, we select five multi-label evaluation criteria and perform experiments on seven multi-label data sets. MOMFS is compared with classic single-objective multi-label feature selection algorithms, multi-objective filter and wrapper feature selection algorithms. The experimental results show that MOMFS can effectively reduce the multi-label data dimension and perform better than other approaches on five evaluation criteria.
引用
收藏
页码:3748 / 3774
页数:27
相关论文
共 50 条
  • [21] A many-objective feature selection for multi-label classification
    Dong, Hongbin
    Sun, Jing
    Sun, Xiaohang
    Ding, Rui
    KNOWLEDGE-BASED SYSTEMS, 2020, 208
  • [22] Reference-point-based multi-objective optimization algorithm with opposition-based voting scheme for multi-label feature selection
    Bidgoli, Azam Asilian
    Ebrahimpour-Komleh, Hossein
    Rahnamayan, Shahryar
    INFORMATION SCIENCES, 2021, 547 : 1 - 17
  • [23] An interactive filter-wrapper multi-objective evolutionary algorithm for feature selection
    Liu, Zhengyi
    Chang, Bo
    Cheng, Fan
    SWARM AND EVOLUTIONARY COMPUTATION, 2021, 65
  • [24] Label Construction for Multi-label Feature Selection
    Spolaor, Newton
    Monard, Maria Carolina
    Tsoumakas, Grigorios
    Lee, Huei Diana
    2014 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2014, : 247 - 252
  • [25] Multi-Label Classification Based on Multi-Objective Optimization
    Shi, Chuan
    Kong, Xiangnan
    Fu, Di
    Yu, Philip S.
    Wu, Bin
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2014, 5 (02)
  • [26] A Multi-instance Multi-label Learning Algorithm Based on Feature Selection
    Chen Tong-tong
    Liu Chan-juan
    Zou Hai-lin
    Shen Qian
    Liu Ying
    Ding Xin-miao
    2015 10TH INTERNATIONAL CONFERENCE ON BROADBAND AND WIRELESS COMPUTING, COMMUNICATION AND APPLICATIONS (BWCCA 2015), 2015, : 587 - 590
  • [27] Feature Selection for Multi-Label Learning
    Spolaor, Newton
    Monard, Maria Carolina
    Lee, Huei Diana
    PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), 2015, : 4401 - 4402
  • [28] ReliefF for Multi-label Feature Selection
    Spolaor, Newton
    Cherman, Everton Alvares
    Monard, Maria Carolina
    Lee, Huei Diana
    2013 BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2013, : 6 - 11
  • [29] Partial Multi-Label Feature Selection
    Wang, Jing
    Li, Peipei
    Yu, Kui
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [30] Multi-Label Causal Feature Selection
    Wu, Xingyu
    Jiang, Bingbing
    Yu, Kui
    Chen, Huanhuan
    Miao, Chunyan
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6430 - 6437