MEASUREMENTS OF AEROSOL CHARGE AND SIZE DISTRIBUTION FOR GRAPHITE, GOLD, PALLADIUM, AND SILVER NANOPARTICLES

被引:12
|
作者
Simones, Matthew P. [1 ]
Gutti, Veera R. [1 ]
Meyer, Ryan M. [1 ]
Loyalka, Sudarshan K. [1 ]
机构
[1] Univ Missouri, Nucl Sci & Engn Inst, Particulate Syst Res Ctr, Columbia, MO 65211 USA
关键词
FISSION-PRODUCT; CORE; BEHAVIOR; ETHYLENE;
D O I
10.13182/NT10-10
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The role of charge on aerosol evolution and hence the nuclear source term has been an issue of interest, and there is a need for both experimental techniques and modeling for quantifying this role. Our focus here is on further exploration of a tandem differential mobility analyzer (TDMA) technique to simultaneously measure both the size and charge (positive, negative, and neutral) dependent aerosol distributions. We have generated graphite, gold, silver, and palladium nanoparticles (aerosol) using a spark generator. We measure the electrical mobility-size distributions for these aerosols using a TDMA, and from these data we deduce the full charge-size distributions. We observe asymmetry in the particle size distributions for negative and positive charges. This asymmetry could have a bearing on the dynamics of charged aerosols, indicating that the assumption of symmetry for size distributions of negatively and positively charged particles in source term simulations may not always be appropriate. Also, the experimental technique should find applications in measurements of aerosol rate processes that are affected by both particle charge and size (e.g., coagulation, deposition, and resuspension), and hence in modeling and simulation of the nuclear source term.
引用
收藏
页码:211 / 226
页数:16
相关论文
共 50 条
  • [1] Size and distribution of palladium nanoparticles electrodeposited on graphite
    Saldan, I.
    Girella, A.
    Milanese, C.
    Fratini, E.
    Dobrovetska, O.
    Levchuk, I.
    Kuntyi, O.
    FUNCTIONAL MATERIALS, 2018, 25 (01): : 82 - 87
  • [2] SIZE DISTRIBUTION OF NUCLEI IN SILVER FILMS ON GRAPHITE
    SACEDON, JL
    MARTIN, CS
    THIN SOLID FILMS, 1972, 10 (01) : 99 - &
  • [3] Paracrystalline structure of gold, silver, palladium and platinum nanoparticles
    Jurkiewicz, Karolina
    Kaminski, Michal
    Glajcar, Wojciech
    Woznica, Natalia
    Julienne, Fanon
    Bartczak, Piotr
    Polanski, Jaroslaw
    Lelatko, Jozef
    Zubko, Maciej
    Burian, Andrzej
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2018, 51 : 411 - 419
  • [4] Investigation of size distribution of silver nanoparticles
    Khordad, R.
    Vakili, M. R.
    Bijanzadeh, A. R.
    SUPERLATTICES AND MICROSTRUCTURES, 2012, 51 (02) : 223 - 231
  • [5] Size-selected gold nanoparticles by aerosol technology
    Magnusson, MH
    Deppert, K
    Malm, JO
    Bovin, JO
    Samuelson, L
    NANOSTRUCTURED MATERIALS, 1999, 12 (1-4): : 45 - 48
  • [6] The size distribution of 'gold standard' nanoparticles
    Ralf Bienert
    Franziska Emmerling
    Andreas F. Thünemann
    Analytical and Bioanalytical Chemistry, 2009, 395 : 1651 - 1660
  • [7] The size distribution of 'gold standard' nanoparticles
    Bienert, Ralf
    Emmerling, Franziska
    Thuenemann, Andreas F.
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 395 (06) : 1651 - 1660
  • [8] Gold, Silver, and Palladium Nanoparticles: A Chemical Tool for Biomedical Applications
    Yaqoob, Sundas Bahar
    Adnan, Rohana
    Rameez Khan, Raja Muhammad
    Rashid, Mohammad
    FRONTIERS IN CHEMISTRY, 2020, 8
  • [9] Electronic cigarette aerosol particle size distribution measurements
    Ingebrethsen, Bradley J.
    Cole, Stephen K.
    Alderman, Steven L.
    INHALATION TOXICOLOGY, 2012, 24 (14) : 976 - 984
  • [10] POLYDISPERSITY - ITS EFFECTS ON AEROSOL SIZE DISTRIBUTION MEASUREMENTS
    COLCORD, LJ
    PARK, YO
    ANDERSON, P
    GENTRY, JW
    JOURNAL OF AEROSOL SCIENCE, 1981, 12 (03) : 180 - 181